RUS  ENG
Full version
PEOPLE

Askhabov Sultan Nazhmudinovich

Publications in Math-Net.Ru

  1. Integral equations of fractional order with a variable external coefficient and monotonic nonlinearity

    Chebyshevskii Sb., 26:3 (2025),  44–57
  2. Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity

    Sib. Èlektron. Mat. Izv., 21:1 (2024),  481–494
  3. Integral equation with the Toeplitz-Hankel kernel and inhomogeneity in the linear part

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:4 (2024),  671–683
  4. Volterra integro-differential equation of arbitrary order with power nonlinearity

    Chebyshevskii Sb., 24:4 (2023),  85–103
  5. Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225 (2023),  3–13
  6. Volterra integral equation with power nonlinearity

    Chebyshevskii Sb., 23:5 (2022),  6–19
  7. Integro-differential equation with a sum-difference kernels and power nonlinearity

    Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022),  10–14
  8. System of inhomogeneous integral equations of convolution type with power nonlinearity

    Vladikavkaz. Mat. Zh., 24:1 (2022),  5–14
  9. Nonlinear integro-differential equations with difference kernels

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198 (2021),  22–32
  10. Gradient method for solving nonlinear discrete and integral equations with difference kernels

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192 (2021),  26–37
  11. System of integro-differential equations of convolution type with power nonlinearity

    Sib. Zh. Ind. Mat., 24:3 (2021),  5–18
  12. Nonlinear convolution type integral equations in complex spaces

    Ufimsk. Mat. Zh., 13:1 (2021),  17–30
  13. A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part

    Vladikavkaz. Mat. Zh., 22:4 (2020),  16–27
  14. On the criteria for positivity of integro-differential convolution operators

    Reports of AIAS, 19:1 (2019),  16–21
  15. Nonlinear integral equations with potential-type kernels in the nonperiodic case

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 170 (2019),  3–14
  16. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019),  3–13
  17. Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018),  3–13
  18. Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter

    Mat. Zametki, 103:1 (2018),  20–26
  19. Singular integro-differential equations with Hilbert kernel and monotone nonlinearity

    Vladikavkaz. Mat. Zh., 19:3 (2017),  11–20
  20. Nonlinear integral equations with kernels of potential type on a segment

    CMFD, 60 (2016),  5–22
  21. Periodic solutions of convolution type equations with monotone nonlinearity

    Ufimsk. Mat. Zh., 8:1 (2016),  22–37
  22. Nonlinear Convolution-Type Equations in Lebesgue Spaces

    Mat. Zametki, 97:5 (2015),  643–654
  23. Approximate solutions of nonlinear convolution type equations on segment

    Ufimsk. Mat. Zh., 5:2 (2013),  3–11
  24. Nonlinear integral equations with potential type kernels on a semiaxis

    Vladikavkaz. Mat. Zh., 15:4 (2013),  3–11
  25. Approximate solution of nonlinear discrete equations of convolution type

    CMFD, 45 (2012),  18–31
  26. Approximate solution of nonlinear equations with weighted potential type operators

    Ufimsk. Mat. Zh., 3:4 (2011),  8–13
  27. Nonlinear equations with weighted potential type operators in Lebesgue spaces

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011),  160–164
  28. A priori bounds of solutions of the nonlinear integral convolution type equation and their applications

    Mat. Zametki, 54:5 (1993),  3–12
  29. Discrete equations of convolution type with monotone nonlinearity in complex spaces

    Dokl. Akad. Nauk, 322:6 (1992),  1015–1018
  30. Nonlinear integral equations of convolution type with almost increasing kernels in cones

    Differ. Uravn., 27:2 (1991),  321–330
  31. Integral equations of convolution type with power nonlinearity and systems of such equations

    Dokl. Akad. Nauk SSSR, 311:5 (1990),  1035–1039
  32. Discrete equations of convolution type with monotone nonlinearity

    Differ. Uravn., 25:10 (1989),  1777–1784
  33. Discrete equations of convolution type with power nonlinearity

    Dokl. Akad. Nauk SSSR, 296:3 (1987),  521–524
  34. On a class of nonlinear integral equations of convolution type

    Differ. Uravn., 23:3 (1987),  512–514
  35. Estimates of solutions of certain nonlinear equations of convolution type and singular integral equations

    Dokl. Akad. Nauk SSSR, 288:2 (1986),  275–278
  36. A nonlinear equation of convolution type

    Differ. Uravn., 22:9 (1986),  1606–1609
  37. Application of the method of monotone operators to some nonlinear equations of convolution type and to singular integral equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 9,  64–66

  38. O. I. Marichev (on his 80th anniversary)

    Vladikavkaz. Mat. Zh., 27:3 (2025),  139–142
  39. Alexey Yakovlevich Kanel-Belov

    Chebyshevskii Sb., 24:4 (2023),  380–400
  40. Salaudin Musaevich Umarkhadzhiev (on the occasion of his 70th birthday)

    Vladikavkaz. Mat. Zh., 25:1 (2023),  141–142
  41. In Memory of Alexei Borisovich Shabat (08.08.1937–24.03.2020)

    Vladikavkaz. Mat. Zh., 22:2 (2020),  100–102
  42. Alexey Borisovich Shabat (on his 80's anniversary)

    Vladikavkaz. Mat. Zh., 19:3 (2017),  83–85
  43. Shabat Aleksei Borisovich (on his 75th birthday)

    Vladikavkaz. Mat. Zh., 14:2 (2012),  71–73


© Steklov Math. Inst. of RAS, 2026