|
|
Publications in Math-Net.Ru
-
Finite logical specifications of effectively separable data models
Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 8, 3–16
-
One question of the theory of numbered groups
Sibirsk. Mat. Zh., 66:2 (2025), 213–218
-
Logical specifications of effectively separable data models
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 6, 15–26
-
Computably separable numbering of locally finitely separable algebras
Sib. Èlektron. Mat. Izv., 21:1 (2024), 315–346
-
Lower semilattices of separable congruences of numbered algebras
Sibirsk. Mat. Zh., 64:4 (2023), 753–769
-
Uniform $m$-equivalences and numberings of classical systems
Sib. Èlektron. Mat. Izv., 19:1 (2022), 49–65
-
Uniformly computably separable algebras with effectively splittable families of negative congruences
Sibirsk. Mat. Zh., 63:3 (2022), 562–575
-
$T_1$-separable numberings of subdirectly indecomposable algebras
Algebra Logika, 60:4 (2021), 400–424
-
Separable algorithmic representations of classical systems and their applications
CMFD, 67:4 (2021), 707–754
-
Structures of degrees of negative representations of linear orders
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12, 31–55
-
Separable enumerations of division rings and effective embeddability of rings therein
Sibirsk. Mat. Zh., 60:1 (2019), 82–94
-
Computably separable models
CMFD, 64:4 (2018), 682–705
-
Topological Spaces over Algorithmic Representations of Universal Algebras
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144 (2018), 17–29
-
Negative dense linear orders
Sibirsk. Mat. Zh., 58:6 (2017), 1306–1331
-
Definability of linear orders over negative equivalences
Algebra Logika, 55:1 (2016), 37–57
-
Homomorphisms onto effectively separable algebras
Sibirsk. Mat. Zh., 57:1 (2016), 47–66
-
Recursively separable enumerated algebras
Uspekhi Mat. Nauk, 51:3(309) (1996), 145–176
-
Algebras over negative equivalences
Algebra Logika, 33:1 (1994), 76–80
-
Enumerated algebras with uniformly recursive-separable classes
Sibirsk. Mat. Zh., 34:5 (1993), 85–102
-
Separation axioms and partitions of the set of natural numbers
Sibirsk. Mat. Zh., 34:3 (1993), 81–85
-
On the number of $Q$-congruences of positive algebras
Algebra Logika, 31:3 (1992), 297–305
-
Homomorphisms on negative algebras
Algebra Logika, 31:2 (1992), 132–144
-
Positive algebras with countable congruence lattices
Algebra Logika, 31:1 (1992), 21–37
-
The number of algebras over simple sets
Mat. Zametki, 52:2 (1992), 150–152
-
Nonconstructive negative algebras with finiteness conditions
Sibirsk. Mat. Zh., 33:6 (1992), 195–198
-
Positive equivalences with finite classes and algebras over them
Sibirsk. Mat. Zh., 33:5 (1992), 196–200
-
Positive algebras with Noetherian congruence lattices
Sibirsk. Mat. Zh., 33:2 (1992), 181–185
-
Positive algebras with congruences of finite index
Algebra Logika, 30:3 (1991), 293–305
-
Algebras with residually finite positively presented
expansions
Algebra Logika, 26:6 (1987), 715–730
© , 2026