RUS  ENG
Full version
PEOPLE

Kostin Andrew Borisovich

Publications in Math-Net.Ru

  1. Integral representations for the argument of the gamma function of a complex variable

    Dokl. RAN. Math. Inf. Proc. Upr., 524 (2025),  19–24
  2. An analytical formula for the argument of the gamma function as a complex quantity

    Mat. Zametki, 118:5 (2025),  748–763
  3. Asymptotic Formulas for Sequences Arising in the Problem of Approximating the Euler Number

    Mat. Zametki, 118:4 (2025),  529–543
  4. On limit cycles of autonomous systems

    CMFD, 70:1 (2024),  77–98
  5. Enveloping of the Values of an Analytic Function Related to the Number $e$

    Mat. Zametki, 113:3 (2023),  374–391
  6. On Taylor coefficients of analytic function related with Euler number

    Ufimsk. Mat. Zh., 14:3 (2022),  74–89
  7. Integral representations of quantities associated with Gamma function

    Ufimsk. Mat. Zh., 13:4 (2021),  51–64
  8. Criteria of the uniqueness of solutions and well-posedness of inverse source problems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 133 (2017),  81–119
  9. Inverse source and inverse coefficients problems for elliptic and parabolic equations in Hölder and Sobolev spaces

    Sib. J. Pure and Appl. Math., 17:3 (2017),  67–85
  10. Recovery of the coefficient of $u_t$ in the heat equation from a condition of nonlocal observation in time

    Zh. Vychisl. Mat. Mat. Fiz., 55:1 (2015),  89–104
  11. Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  779–792
  12. The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation

    Mat. Sb., 204:10 (2013),  3–46
  13. On some problems of the reconstruction of a boundary condition for a parabolic equation. II

    Differ. Uravn., 32:11 (1996),  1519–1528
  14. On some problem of the reconstruction of a boundary condition for a parabolic equation. I

    Differ. Uravn., 32:1 (1996),  107–116
  15. Stability of solutions of inverse coefficient problems for parabolic equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6,  62–64
  16. Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations

    Mat. Zametki, 53:1 (1993),  89–94
  17. On inverse problems of determining a coefficient in a parabolic equation. II

    Sibirsk. Mat. Zh., 34:5 (1993),  147–162
  18. On certain inverse problems for parabolic equations with final and integral observation

    Mat. Sb., 183:4 (1992),  49–68
  19. Inverse problems of determining the coefficient in a parabolic equation. I

    Sibirsk. Mat. Zh., 33:3 (1992),  146–155


© Steklov Math. Inst. of RAS, 2026