RUS  ENG
Full version
PEOPLE

Khatskevich Vladimir Lvovich

Publications in Math-Net.Ru

  1. Application of Cauchy function in the problem of transforming a fuzzy signal by linear dynamic system

    Artificial Intelligence and Decision Making, 2025, no. 2,  97–113
  2. On nonnegative solutions of systems of linear differential equations with variable coefficients under fuzzy initial data and inhomogeneities

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 243 (2025),  63–77
  3. On the transformation of a stationary fuzzy random process by a linear dynamic system

    Avtomat. i Telemekh., 2024, no. 4,  94–111
  4. Converting a continuous fuzzy signal by a linear dynamic system

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 237 (2024),  34–48
  5. On some properties of stationary stochastic processes with fuzzy states

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 233 (2024),  118–126
  6. On stationary stochastic processes with fuzzy states

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:1 (2024),  91–108
  7. Continuous processes with fuzzy states and their applications

    Avtomat. i Telemekh., 2023, no. 8,  43–60
  8. On continuous random processes with fuzzy states

    Avtomat. i Telemekh., 2023, no. 7,  23–40
  9. Fuzzy-random processes with orthogonal and independent increments

    Artificial Intelligence and Decision Making, 2023, no. 4,  38–48
  10. Numerical characteristics of random processes with fuzzy states

    Artificial Intelligence and Decision Making, 2023, no. 1,  32–41
  11. On optimal linear regression for fuzzy random variables

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228 (2023),  85–91
  12. Integral fuzzy means in the aggregation problem for fuzzy information

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023),  138–149
  13. The Green function method in the problem of random signal transformation by a linear dynamic system

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:1 (2023),  116–122
  14. Mean values of fuzzy numbers and their extremal properties

    Avtomat. i Telemekh., 2022, no. 4,  155–166
  15. Means of fuzzy numbers in the fuzzy information evaluation problem

    Avtomat. i Telemekh., 2022, no. 3,  132–143
  16. Fuzzy averaging operators in the problem of aggregating fuzzy information

    Inform. Primen., 16:4 (2022),  51–56
  17. Fuzzy medians as aggregators of fuzzy information

    Artificial Intelligence and Decision Making, 2022, no. 1,  71–77
  18. Linear and nonlinear fuzzy averages of systems of fuzzy numbers

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 209 (2022),  77–87
  19. Some extremal properties of mean characteristics of fuzzy numbers

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207 (2022),  144–156
  20. Extremal properties of means of fuzzy random variables

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022),  160–169
  21. On some properties of fuzzy expectations and nonlinear fuzzy expectations of fuzzy-random variables

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 11,  97–109
  22. On the average values of fuzzy numbers and their systems

    Fuzzy Systems and Soft Computing, 16:1 (2021),  5–20
  23. On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 190 (2021),  122–129
  24. On some nonlinear characteristics of the center of grouping of random variables

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 8,  50–58
  25. On optimal estimates of random variables

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 170 (2019),  129–137
  26. On the law of large numbers for nonlinear mean random variables

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 8,  79–87
  27. On the asymptotics of the motion of a nonlinear viscous fluid

    Sibirsk. Mat. Zh., 58:2 (2017),  430–439
  28. Asymptotics of motions of viscous incompressible fluids with large viscosity

    Contemporary Mathematics and Its Applications, 100 (2016),  134–144
  29. On the Homogenization Principle in a Time-Periodic Problem for the Navier–Stokes Equations with Rapidly Oscillating Mass Force

    Mat. Zametki, 99:5 (2016),  764–777
  30. On extremal properties of mean values of continuous random variables and relations between them

    Contemporary Mathematics and Its Applications, 98 (2015),  149–157
  31. A priori estimates of the maximal utility in Slutskii’s theory

    Contemporary Mathematics and Its Applications, 95 (2015),  77–82
  32. Vanishing viscosity in an initial-boundary value problem for Navier–Stokes equations

    Dokl. Akad. Nauk, 347:2 (1996),  168–170
  33. On self-adjoint operators connected by inequalities and on their applications to problems of mathematical physics

    Mat. Zametki, 55:6 (1994),  3–12
  34. Periodic solutions of differential inclusions with monotonous operators

    Differ. Uravn., 29:4 (1993),  725–727
  35. Solvability of a periodic problem for a nonlinear Hamiltonian system

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 3,  61–70
  36. Some applications of the theory of operators in Krein spaces to the solvability of nonlinear Hamiltonian systems

    Mat. Zametki, 50:4 (1991),  3–9
  37. Regularity classes of bilinear forms, and nonlinear elliptic boundary value problems

    Differ. Uravn., 24:3 (1988),  464–476
  38. Potential operators

    Mat. Zametki, 36:3 (1984),  377–387
  39. A variational approach to a problem on periodic solutions

    Sibirsk. Mat. Zh., 25:1 (1984),  106–119
  40. Galerkin's method under conditions of monotonicity

    Differ. Uravn., 18:8 (1982),  1352–1362
  41. Some local existence theorems for periodic solutions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7,  50–60
  42. Application of the Galerkin method for determining periodic solutions of differential equations

    Differ. Uravn., 15:11 (1979),  2100–2103


© Steklov Math. Inst. of RAS, 2026