|
|
Publications in Math-Net.Ru
-
Dubrovin method and Toda lattice
Algebra i Analiz, 34:6 (2022), 170–196
-
On soliton solutions and soliton interactions of Kulish–Sklyanin and Hirota–Ohta systems
TMF, 213:1 (2022), 20–40
-
Elliptic solitons and «freak waves»
Algebra i Analiz, 33:3 (2021), 129–168
-
Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy
Ufimsk. Mat. Zh., 13:2 (2021), 86–103
-
Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples
TMF, 204:3 (2020), 383–395
-
Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$
TMF, 204:3 (2020), 332–354
-
Two-phase periodic solutions to the AKNS hierarchy equations
Zap. Nauchn. Sem. POMI, 473 (2018), 205–227
-
Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach
TMF, 186:2 (2016), 191–220
-
Quasi-rational solutions of nonlinear Schrödinger equation
Nelin. Dinam., 11:2 (2015), 219–240
-
Cylindrical Kadomtsev–Petviashvili equation: Old and new results
TMF, 152:2 (2007), 304–320
-
Positons: Slowly Decreasing Analogues of Solitons
TMF, 131:1 (2002), 44–61
-
Theta Function Solutions of the Schlesinger System and the Ernst Equation
Funktsional. Anal. i Prilozhen., 34:4 (2000), 18–34
-
Do nonsingular globaly bounded positon solutions exist?
Zap. Nauchn. Sem. POMI, 215 (1994), 38–49
-
Algebro-geometric solutions of gravitation equations
Algebra i Analiz, 1:2 (1989), 77–102
-
Star-triangle equations and some properties of algebraic curves connected with the integrable chiral Potts model
Mat. Zametki, 46:3 (1989), 31–39
-
On the simplest trigonal solutions of the Boussinesq equation and the Kadomtsev–Petviashvili equation
Dokl. Akad. Nauk SSSR, 293:1 (1987), 78–82
-
Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations
Uspekhi Mat. Nauk, 41:2(248) (1986), 3–42
-
On the connection of Kadomtaev–Petviashvili equation and Johnson equation
Zap. Nauchn. Sem. LOMI, 150 (1986), 70–75
-
Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves
Izv. Akad. Nauk SSSR Ser. Mat., 49:3 (1985), 511–529
-
Binary Darboux transformation for the Toda lattice
Zap. Nauchn. Sem. LOMI, 145 (1985), 34–45
-
Reductions of Riemann theta functions of genus $g$ to theta
functions of lesser genus, and symmetries of algebraic curves
Dokl. Akad. Nauk SSSR, 272:1 (1983), 13–17
-
Nonlocal Korteweg–de Vries and Kadomtsev–Petviashvili equations
Dokl. Akad. Nauk SSSR, 265:6 (1982), 1357–1360
-
The solution scattering in the Darboux transformation formalism
Zap. Nauchn. Sem. LOMI, 120 (1982), 136–141
-
Nonlocal analogues of the Korteweg–de Vries and Kadomtsev–Petviashvili equations
Dokl. Akad. Nauk SSSR, 261:3 (1981), 533–537
-
Barboux transformation and two-dimensional Toda lattice
Zap. Nauchn. Sem. LOMI, 101 (1981), 111–118
-
Algebrogeometrical integration of the MNS equation, the finite-gap solutions and their degeneration
Zap. Nauchn. Sem. LOMI, 101 (1981), 64–76
-
Self-similar solutions of the Korteweg–de Vries equation and potentials with a trivial $S$-matrix
TMF, 34:3 (1978), 426–430
-
Non-linear equations of Korteweg–de Vries type, finite-zone linear
operators, and Abelian varieties
Uspekhi Mat. Nauk, 31:1(187) (1976), 55–136
-
vHill's operator with finitely many gaps
Funktsional. Anal. i Prilozhen., 9:1 (1975), 69–70
-
Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation
TMF, 23:1 (1975), 51–68
-
Coordinate asymptotic for Schrödinger equation with a rapidly oscillating potential
Zap. Nauchn. Sem. LOMI, 51 (1975), 119–122
-
Wave operators and positive eigenvalues for a Schrödinger equation with oscillating potential
TMF, 15:3 (1973), 353–366
-
Wave operators for the Schrödinger equation with rapidly oscillating potential
Dokl. Akad. Nauk SSSR, 202:4 (1972), 755–757
-
Scattering problem for radial Schrödinger equation with a slowly decreasing potential
TMF, 10:2 (1972), 238–248
-
Invariance principle for generalized wave operators
TMF, 8:1 (1971), 49–54
-
Wave operators for the Schrödinger equation with a slowly decreasing potential
TMF, 2:3 (1970), 367–376
-
Positons: Slowly Decreasing Analogues of Solitons [Erratum]
TMF, 131:2 (2002), 352
-
Ramil' Faritovich Bikbaev (obituary)
Uspekhi Mat. Nauk, 51:1(307) (1996), 133–136
-
Geometry and Mathematical Physics. Editor's preface
Zap. Nauchn. Sem. POMI, 235 (1996), 6
-
Geometry and mathematical physics (Proceedings of the Seminar devoted to the 200th anniversary of N. I. Lobachevski). Editor's preface
Zap. Nauchn. Sem. POMI, 234 (1996), 5–6
-
Sessions of the I. G. Petrovskii Seminar on Differential Equations and Mathematical Problems of Physics
Uspekhi Mat. Nauk, 30:6(186) (1975), 197–206
© , 2026