RUS  ENG
Full version
PEOPLE

Arslanov Marat Mirzaevich

Publications in Math-Net.Ru

  1. $CEA$-operators and the Ershov hierarchy. I

    Algebra Logika, 63:3 (2024),  248–270
  2. Completeness criterions for a class of reducubilities

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 10,  73–78
  3. $CEA$ operators and the Ershov hierarchy

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8,  72–79
  4. Turing computability: structural theory

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  8–41
  5. Studies in algebra and mathematical logic at the Kazan University

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  3–7
  6. Structural theory of degrees of unsolvability: advances and open problems

    Algebra Logika, 54:4 (2015),  529–535
  7. Definable relations in structures of Turing degrees

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 2,  77–81
  8. Relative enumerability and the $d$-c. e. degrees

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  152–158
  9. Model-Theoretic Properties of the Turing Degrees in the Ershov Difference Hierarchy

    Sovrem. Probl. Mat., 15 (2011),  5–14
  10. Weak presentations of computable partially ordered semigroups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 3,  3–8
  11. Splitting Properties of Total Enumeration Degrees

    Algebra Logika, 42:1 (2003),  3–25
  12. A note on minimal and maximal ideals of ordered semigroups

    Lobachevskii J. Math., 11 (2002),  3–6
  13. Completeness of arithmetic sets under set-theoretic operations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 9,  3–7
  14. Completeness in the arithmetical hierarchy, and fixed points

    Algebra Logika, 28:1 (1989),  3–17
  15. The lattice of the degrees below $0'$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 7,  27–33
  16. Lattice properties of the degrees below $O'$

    Dokl. Akad. Nauk SSSR, 283:2 (1985),  270–273
  17. Families of recursively enumerable sets and their degrees of unsolvability

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 4,  13–19
  18. A class of hypersimple incomplete sets

    Mat. Zametki, 38:6 (1985),  872–874
  19. Effectively hyperimmune sets and majorants

    Mat. Zametki, 38:2 (1985),  302–309
  20. Some generalizations of a fixed-point theorem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 5,  9–16
  21. A criterion for the completeness of recursively enumerable sets, and some generalizations of a fixed point theorem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 4,  3–7
  22. Complete hypersimple sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 4,  30–35
  23. Effectively hypersimple sets

    Algebra Logika, 8:2 (1969),  143–153
  24. Two theorems on recursively enumerable sets

    Algebra Logika, 7:3 (1968),  4–8

  25. Askar Akanovich Tuganbaev (to the 70th anniversary of his birth)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 87,  175–179
  26. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100
  27. Математическая жизнь в Казани в годы войны

    Mat. Pros., Ser. 3, 15 (2011),  20–34
  28. International School-Conference “Recursion Theory and Theory of Complexity” (WRTCT'97)

    Uspekhi Mat. Nauk, 52:6(318) (1997),  213–214


© Steklov Math. Inst. of RAS, 2026