|
|
Publications in Math-Net.Ru
-
$CEA$-operators and the Ershov hierarchy. I
Algebra Logika, 63:3 (2024), 248–270
-
Completeness criterions for a class of reducubilities
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 10, 73–78
-
$CEA$ operators and the Ershov hierarchy
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8, 72–79
-
Turing computability: structural theory
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018), 8–41
-
Studies in algebra and mathematical logic at the Kazan University
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018), 3–7
-
Structural theory of degrees of unsolvability: advances and open problems
Algebra Logika, 54:4 (2015), 529–535
-
Definable relations in structures of Turing degrees
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 2, 77–81
-
Relative enumerability and the $d$-c. e. degrees
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 152–158
-
Model-Theoretic Properties of the Turing Degrees in the Ershov Difference Hierarchy
Sovrem. Probl. Mat., 15 (2011), 5–14
-
Weak presentations of computable partially ordered semigroups
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 3, 3–8
-
Splitting Properties of Total Enumeration Degrees
Algebra Logika, 42:1 (2003), 3–25
-
A note on minimal and maximal ideals of ordered semigroups
Lobachevskii J. Math., 11 (2002), 3–6
-
Completeness of arithmetic sets under set-theoretic operations
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 9, 3–7
-
Completeness in the arithmetical hierarchy, and fixed points
Algebra Logika, 28:1 (1989), 3–17
-
The lattice of the degrees below $0'$
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 7, 27–33
-
Lattice properties of the degrees below $O'$
Dokl. Akad. Nauk SSSR, 283:2 (1985), 270–273
-
Families of recursively enumerable sets and their degrees of unsolvability
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 4, 13–19
-
A class of hypersimple incomplete sets
Mat. Zametki, 38:6 (1985), 872–874
-
Effectively hyperimmune sets and majorants
Mat. Zametki, 38:2 (1985), 302–309
-
Some generalizations of a fixed-point theorem
Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 5, 9–16
-
A criterion for the completeness of recursively enumerable sets, and some generalizations of a fixed point theorem
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 4, 3–7
-
Complete hypersimple sets
Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 4, 30–35
-
Effectively hypersimple sets
Algebra Logika, 8:2 (1969), 143–153
-
Two theorems on recursively enumerable sets
Algebra Logika, 7:3 (1968), 4–8
-
Askar Akanovich Tuganbaev (to the 70th anniversary of his birth)
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 87, 175–179
-
Leonid Aleksandrovich Aksent'ev
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3, 98–100
-
Математическая жизнь в Казани в годы войны
Mat. Pros., Ser. 3, 15 (2011), 20–34
-
International School-Conference “Recursion Theory and Theory of Complexity” (WRTCT'97)
Uspekhi Mat. Nauk, 52:6(318) (1997), 213–214
© , 2026