RUS  ENG
Full version
PEOPLE

Alekseevskii Dmitrii Vladimirovich

Publications in Math-Net.Ru

  1. Special uniform Vinberg cones and their applications

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215 (2022),  3–17
  2. Homogeneous symplectic $4$-manifolds and finite dimensional Lie algebras of symplectic vector fields on the symplectic $4$-space

    Mosc. Math. J., 20:2 (2020),  217–256
  3. Homogeneous para-Kähler Einstein manifolds

    Uspekhi Mat. Nauk, 64:1(385) (2009),  3–50
  4. Compact Riemannian Manifolds with Homogeneous Geodesics

    SIGMA, 5 (2009), 093, 16 pp.
  5. Twistors and $G$-structures

    Izv. RAN. Ser. Mat., 56:1 (1992),  3–37
  6. Twistors of a Riemannian manifold, and CR-structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 5,  3–19
  7. Contact homogeneous spaces

    Funktsional. Anal. i Prilozhen., 24:4 (1990),  74–75
  8. Maximally homogeneous $G$-structures and filtered Lie algebras

    Dokl. Akad. Nauk SSSR, 299:3 (1988),  521–525
  9. Conformal mappings of $G$-structures

    Funktsional. Anal. i Prilozhen., 22:4 (1988),  68–69
  10. Geometry of spaces of constant curvature

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 29 (1988),  5–146
  11. Basic ideas and concepts of differential geometry

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 28 (1988),  5–289
  12. Completeness of left-invariant metrics on Lie groups

    Funktsional. Anal. i Prilozhen., 21:3 (1987),  73–74
  13. Kähler–Einstein metrics in holomorphic bundles

    Funktsional. Anal. i Prilozhen., 21:2 (1987),  66–67
  14. Invariant Kähler–Einstein metrics on compact homogeneous spaces

    Funktsional. Anal. i Prilozhen., 20:3 (1986),  1–16
  15. Lie groups

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 20 (1982),  153–192
  16. On perfect actions of Lie groups

    Uspekhi Mat. Nauk, 34:1(205) (1979),  219–220
  17. Classification of homogeneous conformally flat Riemannian manifolds

    Mat. Zametki, 24:1 (1978),  103–110
  18. Structure of homogeneous Riemann spaces with zero Ricci curvature

    Funktsional. Anal. i Prilozhen., 9:2 (1975),  5–11
  19. Classification of quaternionic spaces with a transitive solvable group of motions

    Izv. Akad. Nauk SSSR Ser. Mat., 39:2 (1975),  315–362
  20. Homogeneous Riemannian spaces of negative curvature

    Mat. Sb. (N.S.), 96(138):1 (1975),  93–117
  21. Lie groups and homogeneous spaces

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 11 (1974),  37–123
  22. $S^n$ and $E^n$ are the only Riemannian spaces that admit an essential conformal transformation

    Uspekhi Mat. Nauk, 28:5(173) (1973),  225–226
  23. Groups of conformal transformations of Riemannian spaces

    Mat. Sb. (N.S.), 89(131):2(10) (1972),  280–296
  24. Conjugacy of polar factorizations of Lie groups

    Mat. Sb. (N.S.), 84(126):1 (1971),  14–26
  25. Quaternion Riemann spaces with transitive reductive or solvable groups of motions

    Funktsional. Anal. i Prilozhen., 4:4 (1970),  68–69
  26. Compact quaternion spaces

    Funktsional. Anal. i Prilozhen., 2:2 (1968),  11–20
  27. Riemannian spaces with exceptional holonomy groups

    Funktsional. Anal. i Prilozhen., 2:2 (1968),  1–10

  28. Èrnest Borisovich Vinberg (obituary)

    Uspekhi Mat. Nauk, 76:6(462) (2021),  181–192
  29. In memory of Losik Mark Vol'fovich

    Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013),  118–122
  30. Érnest Borisovich Vinberg (on his 60th birthday)

    Uspekhi Mat. Nauk, 52:6(318) (1997),  193–200


© Steklov Math. Inst. of RAS, 2026