RUS  ENG
Full version
PEOPLE

Nechaev Vasilii Il'ich

Publications in Math-Net.Ru

  1. Distribution of signs in a sequence of rectangular matrices over a finite field

    Trudy Mat. Inst. Steklova, 218 (1997),  335–342
  2. Complexity of a determinate algorithm for the discrete logarithm

    Mat. Zametki, 55:2 (1994),  91–101
  3. Estimation of the modulus of complete rational trigonometric sums of degree three and four

    Trudy Mat. Inst. Steklov., 158 (1981),  125–129
  4. On the question of representing natural numbers by a sum of terms of the form $x(x+1)\ldots (x+n-1)/n!$

    Trudy Mat. Inst. Steklov., 142 (1976),  195–197
  5. Estimate of a complete rational trigonometric su

    Mat. Zametki, 17:6 (1975),  839–849
  6. Trigonometric sums for recurrent sequences

    Dokl. Akad. Nauk SSSR, 206:4 (1972),  811–814
  7. Trigonometric sums for recursive sequences of elements in a finite field

    Mat. Zametki, 11:5 (1972),  597–607
  8. Linear recursion congruences with periodic coefficients

    Mat. Zametki, 3:6 (1968),  625–632
  9. The distirbution of nonresidues and primitive roots in recurrence sequences over a field of algebraic numbers

    Uspekhi Mat. Nauk, 20:3(123) (1965),  197–203
  10. A best-possible estimate of trigonometric sums for recurrent functions with non-constant coefficients

    Dokl. Akad. Nauk SSSR, 154:3 (1964),  520–522
  11. The group of non-singular matrices over a finite field, and recurrent sequences

    Dokl. Akad. Nauk SSSR, 152:2 (1963),  275–277
  12. On the representation of natural numbers as a sum of terms of the form $\dfrac{x(x+1)\dotsb(x+n-1)}{n!}$

    Izv. Akad. Nauk SSSR Ser. Mat., 17:6 (1953),  485–498
  13. Waring's problem for polynomials

    Trudy Mat. Inst. Steklov., 38 (1951),  190–243

  14. Aleksandr Adol'fovich Bukhshtab (obituary)

    Uspekhi Mat. Nauk, 46:1(277) (1991),  201–202


© Steklov Math. Inst. of RAS, 2026