RUS  ENG
Full version
PEOPLE

Savchin Vladimir Mikhailovich

Publications in Math-Net.Ru

  1. On some geometric aspects of evolution variational problems

    Eurasian Math. J., 16:3 (2025),  9–19
  2. To geometric aspects of infinite-dimensional dynamical systems

    CMFD, 70:1 (2024),  163–172
  3. On potentiality, discretization, and integral invariants of the infinite-dimensional Birkhoff systems

    Izv. Saratov Univ. Math. Mech. Inform., 24:2 (2024),  184–192
  4. Variational approach to the construction of discrete mathematical model of the pendulum motion with vibrating suspension with friction

    Izvestiya VUZ. Applied Nonlinear Dynamics, 30:4 (2022),  411–423
  5. Bi-variationality, symmetries and approximate solutions

    CMFD, 67:3 (2021),  596–608
  6. On discrete systems with potential operators

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:3 (2021),  74–82
  7. Nonpotentiality of Sobolev system and construction of semibounded functional

    Ufimsk. Mat. Zh., 12:2 (2020),  107–117
  8. Lie-admissible algebras associated with dynamical systems

    Sibirsk. Mat. Zh., 60:3 (2019),  655–663
  9. On the connection between first integrals, integral invariants and potentiality of evolutionary equations

    Eurasian Math. J., 9:4 (2018),  82–90
  10. On invariance of functionals and Euler–Lagrange equations corresponding to them

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 2,  58–64
  11. On the existence of variational principles for differential–difference evolution equations

    Trudy Mat. Inst. Steklova, 283 (2013),  25–39
  12. On direct variational formulations for second order evolutionary equations

    Eurasian Math. J., 3:4 (2012),  23–34
  13. On the Existence of a Variational Principle for an Operator Equation with Second Derivative with Respect to “Time”

    Mat. Zametki, 80:1 (2006),  87–94
  14. On the Structure of a Variational Equation of Evolution Type with the Second $t$-Derivative

    Differ. Uravn., 39:1 (2003),  118–124
  15. Construction of a semibounded functional for a boundary value problem for nonlinear nonstationary Navier–Stokes equations

    Differ. Uravn., 30:1 (1994),  162–168
  16. On the structure of a lie-admissible algebra in the space of Gâteaux differentiable operators

    Mat. Zametki, 55:1 (1994),  152–153
  17. On the structure of variational equations with symmetric operator $d/dt$

    Differ. Uravn., 29:10 (1993),  1765–1771
  18. A criterion for the existence of generalized integral variational principles for given equations

    Differ. Uravn., 29:8 (1993),  1425–1432
  19. Variational principles for nonpotential operators

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 40 (1992),  3–176

  20. Mikhail Lvovich Goldman (13.04.1945–05.07.2025)

    Vladikavkaz. Mat. Zh., 27:3 (2025),  143–144
  21. Vladimir Mikhailovich Filippov

    CMFD, 67:3 (2021),  423–426
  22. Valentin Vital'evich Rumyantsev (A tribute in honor of his 80th birthday)

    Differ. Uravn., 37:12 (2001),  1587–1592
  23. Abdel’khak Safiullovich Galiullin

    Differ. Uravn., 36:3 (2000),  427–428
  24. Abdel'khak Safiullovich Galiullin (on the occasion of his 70th birthday)

    Differ. Uravn., 26:2 (1990),  361–362


© Steklov Math. Inst. of RAS, 2026