RUS  ENG
Full version
PEOPLE

Berkolaiko Mark Zinovevich

Publications in Math-Net.Ru

  1. Wavelet bases and linear operators in anisotropic Lizorkin–Triebel spaces

    Dokl. Akad. Nauk, 340:5 (1995),  583–586
  2. Bases of splashes and linear operators in anisotropic Lizorkin–Triebel spaces

    Trudy Mat. Inst. Steklov., 210 (1995),  5–30
  3. On infinitely smooth compactly supported almost-wavelets

    Mat. Zametki, 56:3 (1994),  3–12
  4. Images of wavelets under the influence of convolution operators

    Mat. Zametki, 55:5 (1994),  13–24
  5. Unconditional bases in spaces of functions of anisotropic smoothness

    Trudy Mat. Inst. Steklov., 204 (1993),  35–51
  6. Infinitely smooth almost-wavelets with compact support

    Dokl. Akad. Nauk, 326:6 (1992),  935–938
  7. Wavelet bases in spaces of differentiable functions of anisotropic smoothness

    Dokl. Akad. Nauk, 323:4 (1992),  615–618
  8. Convexity and concavity of Banach ideal spaces, and embedding theorems

    Sibirsk. Mat. Zh., 31:3 (1990),  11–18
  9. Traces of functions in generalized Sobolev spaces with a mixed norm on an arbitrary coordinate subspace. II

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 9 (1987),  34–41
  10. Traces of functions in generalized Sobolev spaces with a mixed norm on an arbitrary coordinate subspace. I

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 7 (1987),  30–44
  11. Convexity of Banach spaces and imbedding theorems

    Trudy Mat. Inst. Steklov., 180 (1987),  49–50
  12. Inequalities of different metrics in mixed norms and embedding theorems

    Dokl. Akad. Nauk SSSR, 288:4 (1986),  788–791
  13. Theorems on traces on coordinate subspaces for some spaces of differentiable functions with anisotropic mixed norm

    Dokl. Akad. Nauk SSSR, 282:5 (1985),  1042–1046
  14. Traces of generalized spaces of differentiable functions with mixed norm

    Dokl. Akad. Nauk SSSR, 277:2 (1984),  270–274
  15. Operators in spaces $H_{\varphi,E}$

    Sibirsk. Mat. Zh., 24:3 (1983),  18–33
  16. Imbedding theorems for different metrics and measurements of generalized Besov spaces

    Trudy Mat. Inst. Steklov., 161 (1983),  18–28
  17. Inequalities for entire functions of exponential type in symmetric spaces

    Trudy Mat. Inst. Steklov., 161 (1983),  3–17
  18. Inequalities for different metrics and dimensions in symmetric spaces, and imbeddings of generalized Besov spaces

    Dokl. Akad. Nauk SSSR, 262:4 (1982),  781–784
  19. Interpolation of quasilinear operators and inequalities for entire functions in symmetric spaces

    Funktsional. Anal. i Prilozhen., 16:1 (1982),  60–61
  20. Imbedding theorems for generalized Besov and Hölder spaces

    Dokl. Akad. Nauk SSSR, 251:3 (1980),  521–525
  21. On a class of function spaces

    Dokl. Akad. Nauk SSSR, 244:1 (1979),  16–19
  22. Estimates of the moduli of continuity of functions in the spaces $B_{p,\theta}^{a,\varphi}$ and $H_{\varphi,\theta}$ and their applications

    Dokl. Akad. Nauk SSSR, 233:5 (1977),  761–764
  23. Some classes of subspaces of Hölder spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 7,  3–10
  24. Certain subspaces of the spaces $H_\varphi^0$

    Uspekhi Mat. Nauk, 27:3(165) (1972),  193–194
  25. Operators in generalized Hölder spaces

    Sibirsk. Mat. Zh., 12:5 (1971),  1015–1025
  26. Operators in Hölder spaces

    Dokl. Akad. Nauk SSSR, 192:6 (1970),  1199–1201


© Steklov Math. Inst. of RAS, 2026