RUS  ENG
Full version
PEOPLE

Bazarkhanov Daurenbek Bolysbekovich

Publications in Math-Net.Ru

  1. Optimal sampling recovery and $\varepsilon$-entropy of Lizorkin–Triebel classes $F^s_{\infty\,q}(\mathbb T^m)$ in $L_r(\mathbb T^m)$

    Mat. Zametki, 117:5 (2025),  785–789
  2. Boundedness of toroidal multilinear pseudodifferential operators with symbols in Hörmander classes

    Uspekhi Mat. Nauk, 80:1(481) (2025),  153–154
  3. Optimal cubature formulas for Morrey type function classes on multidimensional torus

    Eurasian Math. J., 15:3 (2024),  25–37
  4. Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables

    Trudy Mat. Inst. Steklova, 312 (2021),  22–42
  5. Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. II

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  15–30
  6. Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. I

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  57–79
  7. ($L_p$$L_q$)-Boundedness of Pseudodifferential Operators on the $n$-Dimensional Torus

    Mat. Zametki, 102:6 (2017),  938–942
  8. The $L_p$-Boundedness of Some Classes of Pseudo-Differential Operators on the $m$-Dimensional Torus

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  64–80
  9. Nonlinear trigonometric approximations of multivariate function classes

    Trudy Mat. Inst. Steklova, 293 (2016),  8–42
  10. Nonlinear tensor product approximation of functions

    J. Complexity, 31:6 (2015),  867–884
  11. Nonlinear approximations of classes of periodic functions of many variables

    Trudy Mat. Inst. Steklova, 284 (2014),  8–37
  12. Estimates for the widths of classes of periodic functions of several variables – I

    Eurasian Math. J., 1:3 (2010),  11–26
  13. Estimates of the Fourier Widths of Classes of Nikolskii–Besov and Lizorkin–Triebel Types of Periodic Functions of Several Variables

    Mat. Zametki, 87:2 (2010),  305–308
  14. Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I

    Trudy Mat. Inst. Steklova, 269 (2010),  8–30
  15. Equivalent (Quasi)Norms for Certain Function Spaces of Generalized Mixed Smoothness

    Trudy Mat. Inst. Steklova, 248 (2005),  26–39
  16. Characterizations of the Nikol'skii–Besov and Lizorkin–Triebel Function Spaces of Mixed Smoothness

    Trudy Mat. Inst. Steklova, 243 (2003),  53–65
  17. Approximation of certain classes of smooth periodic functions of several variables by means of interpolation splines defined over a uniform net

    Mat. Zametki, 57:6 (1995),  917–919
  18. Best quadrature formulas for improper integrals on certain classes of differentiable functions

    Mat. Zametki, 49:6 (1991),  132–134


© Steklov Math. Inst. of RAS, 2026