RUS  ENG
Full version
PEOPLE

Bykhovskii Érik Borisovich

Publications in Math-Net.Ru

  1. On strong evolution inequalities for the equations $u_{tt}=a(t)u_{xx}$

    Mat. Zametki, 57:6 (1995),  913–916
  2. Mathematical problems in the theory of a one-dimensional isothermic flow of gas with cavities

    Dokl. Akad. Nauk SSSR, 314:5 (1990),  1106–1110
  3. Qualitative investigation of generalized solutions of quasilinear hyperbolic $2\times2$ systems using the entropy condition

    Sibirsk. Mat. Zh., 26:1 (1985),  37–43
  4. A boundary value problem for a quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function

    Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977),  416–437
  5. A uniqueness theorem for a generalized solution of a system of two quasilinear equations in the class of bounded, measurable functions

    Zap. Nauchn. Sem. LOMI, 69 (1977),  3–18
  6. Boundary and initial-boundary value problems “in the large” for a quasilinear conservation law

    Dokl. Akad. Nauk SSSR, 215:1 (1974),  17–20
  7. A global boundary-value problem for a quasilinear differential equation of first order

    Izv. Akad. Nauk SSSR Ser. Mat., 38:6 (1974),  1408–1456
  8. An initial boundary value problem for the equation $u_t+a_x(u)=0$

    Dokl. Akad. Nauk SSSR, 202:3 (1972),  511–514
  9. Certain topological questions, for finite-dimensional vector fields, connected with the theory of discontinuous solutions of systems of quasilinear conservation laws

    Dokl. Akad. Nauk SSSR, 186:5 (1969),  994–997
  10. Automodel propagating-wave type solutions to certain quasilinear equations, especially to the equations describing a water flow in an inclined channel

    Dokl. Akad. Nauk SSSR, 169:4 (1966),  789–791
  11. Absence in $C$, $L_p$ and $W_p^1$ ($1\le p<2$) spaces of analogues to energy inequality for the string equation with a bounded leading coefficient

    Dokl. Akad. Nauk SSSR, 163:5 (1965),  1047–1049
  12. Nonadmissible viscosity matrices for the equations of isothermal gas motion

    Dokl. Akad. Nauk SSSR, 146:4 (1962),  751–753
  13. On the small parameter (“vanishing viscosity”) method for a system of equations in gas dynamics

    Zh. Vychisl. Mat. Mat. Fiz., 2:6 (1962),  1128–1131
  14. Orthogonal decomposition of the space of vector functions square-summable on a given domain, and the operators of vector analysis

    Trudy Mat. Inst. Steklov., 59 (1960),  5–36


© Steklov Math. Inst. of RAS, 2026