RUS  ENG
Full version
PEOPLE

Cherepnev Mikhail Alekseevich

Publications in Math-Net.Ru

  1. Mathematical modeling of results of borrowing foreign words of the Russian language a reflection of the process of historical interaction between Russians and foreigners

    Comp. nanotechnol., 7:2 (2020),  79–89
  2. Reduction of the integer factorization complexity upper bound to the complexity of the Diffie–Hellman problem

    Diskr. Mat., 32:1 (2020),  110–114
  3. Modular algorithm for reducing matrices to the Smith normal form

    Diskr. Mat., 28:2 (2016),  154–160
  4. Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations

    Diskr. Mat., 28:1 (2016),  150–155
  5. The universal block Lanczos–Padé method for linear systems over large prime fields

    Fundam. Prikl. Mat., 19:6 (2014),  225–249
  6. A note on the kernel of group homomorphism from the Weil descent method

    Fundam. Prikl. Mat., 19:6 (2014),  213–224
  7. Pairing inversion for finding discrete logarithms

    Fundam. Prikl. Mat., 18:4 (2013),  185–195
  8. A connection of series approximations and the basis of the Krylov space in block algorithms of Coppersmith and Montgomery

    Fundam. Prikl. Mat., 17:5 (2012),  211–223
  9. A block algorithm of Lanczos type for solving sparse systems of linear equations

    Diskr. Mat., 20:1 (2008),  145–150
  10. Properties of large prime divisors of numbers of the form $p-1$

    Mat. Zametki, 80:6 (2006),  920–925
  11. Public key distribution schemes based on a noncommutative group

    Diskr. Mat., 15:2 (2003),  47–51
  12. On a connection between the complexities of the discrete logarithmization and the Diffie–Hellman problems

    Diskr. Mat., 8:3 (1996),  22–30
  13. Algebraic independence of values of hypergeometric $E$-functions

    Mat. Zametki, 57:6 (1995),  896–912
  14. On algebraic independence of some subclasses of hypergeometric functions

    Mat. Zametki, 55:1 (1994),  117–129
  15. Public key distribution systems based on noncommutative semigroups

    Dokl. Akad. Nauk, 332:5 (1993),  566–567
  16. On algebraic independence of values of hypergeometric $E$-functions, satisfying linear nonhomogeneous differential equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 1,  27–33
  17. On the algebraic independence of the values of hypergeometric $E$-functions

    Uspekhi Mat. Nauk, 45:6(276) (1990),  155–156


© Steklov Math. Inst. of RAS, 2026