RUS  ENG
Full version
PEOPLE

Khairullin Ravil' Sagitovich

Publications in Math-Net.Ru

  1. Краевая задача для сингулярного уравнения с сильным вырождением

    Matem. Mod. Kraev. Zadachi, 3 (2010),  272–274
  2. A Gellerstedt-type problem for an equation of the second kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 10,  72–77
  3. A problem for a mixed-type equation of the second kind

    Differ. Uravn., 40:10 (2004),  1405–1411
  4. The Tricomi problem in the class of functions unbounded on the characteristic

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 4,  3–7
  5. An analogue of the Frankl\cprime problem for an equation of the second kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 4,  59–63
  6. The Tricomi problem for an equation with singular coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 3,  68–76
  7. A Cauchy-type problem for the Euler-Poisson-Darboux equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1,  81–84
  8. On the Tricomi problem for an equation of the second kind in the case of an arbitrary domain

    Differ. Uravn., 31:5 (1995),  894–895
  9. Tricomi's problem for a second order system of equations

    Mat. Zametki, 57:4 (1995),  625–632
  10. The Tricomi problem for an equation of mixed type of the second kind in the case of an unbounded domain

    Differ. Uravn., 30:11 (1994),  2010–2017
  11. On the Tricomi problem for a mixed-type equation of the second kind

    Sibirsk. Mat. Zh., 35:4 (1994),  927–936
  12. On the theory of the Euler-Poisson-Darboux equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 11,  69–76
  13. Potential theory for a model equation of the second kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 3,  64–73
  14. The Tricomi problem for an equation of mixed type of the second kind in the case of a normal domain

    Differ. Uravn., 26:8 (1990),  1396–1407
  15. A boundary value problem for the Euler–Poisson–Darboux equation with strong degeneration

    Trudy Sem. Kraev. Zadacham, 23 (1987),  231–238
  16. The Dirichlet problem for a system of second-order equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 3,  80–83
  17. Particular solutions of the inhomogeneous Euler–Darboux equation with arbitrary real parameters

    Trudy Sem. Kraev. Zadacham, 22 (1985),  193–196


© Steklov Math. Inst. of RAS, 2026