RUS  ENG
Full version
PEOPLE

Shikin Evgenii Viktorovich

Publications in Math-Net.Ru

  1. The Little History of the Big Theorem. In memory of N. V. Efimoff

    Istor.-Mat. Issled., Ser. 2, 15(50) (2014),  47–54
  2. Object search. Dynamics. Geometry. Graphics

    Fundam. Prikl. Mat., 11:1 (2005),  3–34
  3. Geometry and Graphics of informational sets in problems on dynamical search for moving objects

    Tr. Geom. Semin., 24 (2003),  17–30
  4. The problem of the regular isometric imbeddings and the Monge–Ampère equation of the hyperbolic type

    Zap. Nauchn. Sem. POMI, 234 (1996),  177–186
  5. Dynamic search of objects. A geometric approach to the problem

    Fundam. Prikl. Mat., 1:4 (1995),  827–862
  6. Small parameter in the theory of isometric imbeddings for two-dimensional Riemannian manifolds into Euclidean spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995),  59–107
  7. Simple search games on an infinite circular cylinder

    Mat. Zametki, 58:5 (1995),  762–772
  8. A tracking domain in a Lobachevskii space

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2,  36–41
  9. Dynamic search and detection problems on some closed surfaces

    Differ. Uravn., 29:11 (1993),  1948–1957
  10. The method of tracking domains in search problems

    Mat. Sb., 184:10 (1993),  107–134
  11. Parabolicity of embeddable and hyperbolicity of nonembeddable two-dimensional manifolds of negative curvature

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 5,  42–45
  12. The isometric embedding problem and Monge–Ampère equations of hyperbolic type

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 14 (1989),  245–258
  13. Analytic tools of the theory of imbeddings of two-dimensional manifolds of negative curvature

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 1,  56–60
  14. Isometric immersion in $E^3$ of a convex domain of the Lobachevskii plane containing two horocircles

    Mat. Zametki, 39:4 (1986),  612–617
  15. The isometric imbedding in $E^3$ of the convex region of Lobachevskij plane containing a horicircle

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5,  79–81
  16. Equations of isometric imbeddings in three-dimensional Euclidean space of two-dimensional manifolds of negative curvature

    Mat. Zametki, 31:4 (1982),  601–612
  17. Green's formula for domains with rectifiable boundary

    Dokl. Akad. Nauk SSSR, 253:1 (1980),  42–44
  18. Isometric embedding of two-dimensional manifolds of negative curvature by the Darboux method

    Mat. Zametki, 27:5 (1980),  779–794
  19. Isometric imbedding in $E^3$ of noncompact domains of nonpositive curvature

    Mat. Zametki, 25:5 (1979),  785–797
  20. Isometric imbeddings in $E^3$ of noncompact domains of nonpositive curvature

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 7 (1975),  249–266
  21. On the existence of solutions of the system of Peterson–Codazzi and gauss equations

    Mat. Zametki, 17:5 (1975),  765–781
  22. On the regularity of oricyclic coordinates

    Mat. Zametki, 17:3 (1975),  475–484
  23. On global isometric imbedding in $\mathbf{R}^3$ of some metrics of nonpositive curvature

    Dokl. Akad. Nauk SSSR, 215:1 (1974),  61–63
  24. Surfaces of negative curvature

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 12 (1974),  171–207
  25. On regular embedding integrally in $R^3$ of metrics of class $C^4$ of negative curvature

    Mat. Zametki, 14:2 (1973),  261–266
  26. The regular realization in the large in $E^3$ of two-dimensional metrics of class $C^2$ with negative curvature of class $C^1$

    Dokl. Akad. Nauk SSSR, 188:5 (1969),  1014–1016

  27. Об особенностях математической подготовки по управленческим специальностям

    Math. Ed., 2010, no. 2(54),  8–12
  28. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2008, no. 1,  45–53
  29. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2007, no. 1,  44–52
  30. Московский государственный университет им. М.В. Ломоносова

    Kvant, 2006, no. 1,  44–52
  31. Eduard Genrikhovich Poznyak (on his seventieth birthday)

    Uspekhi Mat. Nauk, 48:4(292) (1993),  245–247


© Steklov Math. Inst. of RAS, 2026