|
|
Publications in Math-Net.Ru
-
The Little History of the Big Theorem. In memory of N. V. Efimoff
Istor.-Mat. Issled., Ser. 2, 15(50) (2014), 47–54
-
Object search. Dynamics. Geometry. Graphics
Fundam. Prikl. Mat., 11:1 (2005), 3–34
-
Geometry and Graphics of informational
sets in problems on dynamical search for moving objects
Tr. Geom. Semin., 24 (2003), 17–30
-
The problem of the regular isometric imbeddings and the Monge–Ampère equation of the hyperbolic type
Zap. Nauchn. Sem. POMI, 234 (1996), 177–186
-
Dynamic search of objects. A geometric approach to the problem
Fundam. Prikl. Mat., 1:4 (1995), 827–862
-
Small parameter in the theory of isometric imbeddings for two-dimensional Riemannian manifolds into Euclidean spaces
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995), 59–107
-
Simple search games on an infinite circular cylinder
Mat. Zametki, 58:5 (1995), 762–772
-
A tracking domain in a Lobachevskii space
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 2, 36–41
-
Dynamic search and detection problems on some closed surfaces
Differ. Uravn., 29:11 (1993), 1948–1957
-
The method of tracking domains in search problems
Mat. Sb., 184:10 (1993), 107–134
-
Parabolicity of embeddable and hyperbolicity of nonembeddable two-dimensional manifolds of negative curvature
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 5, 42–45
-
The isometric embedding problem and Monge–Ampère equations of hyperbolic type
Trudy Inst. Mat. Sib. Otd. AN SSSR, 14 (1989), 245–258
-
Analytic tools of the theory of imbeddings of two-dimensional manifolds of negative curvature
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 1, 56–60
-
Isometric immersion in $E^3$ of a convex domain of the Lobachevskii plane containing two horocircles
Mat. Zametki, 39:4 (1986), 612–617
-
The isometric imbedding in $E^3$ of the convex region of Lobachevskij plane containing a horicircle
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5, 79–81
-
Equations of isometric imbeddings in three-dimensional Euclidean space of two-dimensional manifolds of negative curvature
Mat. Zametki, 31:4 (1982), 601–612
-
Green's formula for domains with rectifiable boundary
Dokl. Akad. Nauk SSSR, 253:1 (1980), 42–44
-
Isometric embedding of two-dimensional manifolds of negative curvature by the Darboux method
Mat. Zametki, 27:5 (1980), 779–794
-
Isometric imbedding in $E^3$ of noncompact domains of nonpositive curvature
Mat. Zametki, 25:5 (1979), 785–797
-
Isometric imbeddings in $E^3$ of noncompact domains of nonpositive curvature
Itogi Nauki i Tekhniki. Ser. Probl. Geom., 7 (1975), 249–266
-
On the existence of solutions of the system of Peterson–Codazzi and gauss equations
Mat. Zametki, 17:5 (1975), 765–781
-
On the regularity of oricyclic coordinates
Mat. Zametki, 17:3 (1975), 475–484
-
On global isometric imbedding in $\mathbf{R}^3$ of some metrics of nonpositive curvature
Dokl. Akad. Nauk SSSR, 215:1 (1974), 61–63
-
Surfaces of negative curvature
Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 12 (1974), 171–207
-
On regular embedding integrally in $R^3$ of metrics of class $C^4$ of negative curvature
Mat. Zametki, 14:2 (1973), 261–266
-
The regular realization in the large in $E^3$ of two-dimensional metrics of class $C^2$ with negative curvature of class $C^1$
Dokl. Akad. Nauk SSSR, 188:5 (1969), 1014–1016
-
Об особенностях математической подготовки по управленческим специальностям
Math. Ed., 2010, no. 2(54), 8–12
-
Московский государственный университет им. М.В. Ломоносова
Kvant, 2008, no. 1, 45–53
-
Московский государственный университет им. М.В. Ломоносова
Kvant, 2007, no. 1, 44–52
-
Московский государственный университет им. М.В. Ломоносова
Kvant, 2006, no. 1, 44–52
-
Eduard Genrikhovich Poznyak (on his seventieth birthday)
Uspekhi Mat. Nauk, 48:4(292) (1993), 245–247
© , 2026