RUS  ENG
Full version
PEOPLE

Korchagin Mikhail Alekseevich

Publications in Math-Net.Ru

  1. Self-propagating high-temperature synthesis of $\mathrm{Ti}_3\mathrm{SiC}_2$ and $\mathrm{Ti}_3\mathrm{AlC}_2$ single-phase MAX phases in mechanically activated mixtures of initial reactants

    Fizika Goreniya i Vzryva, 58:1 (2022),  53–61
  2. Hedvall effect in self-propagating high-temperature synthesis in mechanically activated compositions

    Fizika Goreniya i Vzryva, 57:6 (2021),  8–19
  3. Obtaining ceramic and composite materials using a combination of methods of self-propagating high-temperature synthesis and electric spark sintering (review)

    Fizika Goreniya i Vzryva, 57:4 (2021),  3–17
  4. Synthesis of aluminum diboride by thermal explosion in mechanically activated mixtures of initial reagents

    Fizika Goreniya i Vzryva, 54:4 (2018),  45–54
  5. Self-propagating high temperature synthesis in mechanically activated mixtures of boron carbide and titanium

    Fizika Goreniya i Vzryva, 53:6 (2017),  58–66
  6. Superadiabatic regime of the thermal explosion in a mechanically activated mixture of tungsten with carbon black

    Fizika Goreniya i Vzryva, 52:2 (2016),  112–121
  7. Thermal explosion in mechanically activated low-calorific-value compositions

    Fizika Goreniya i Vzryva, 51:5 (2015),  77–86
  8. Thermal explosion and self-propagating high-temperature synthesis in mechanically activated SiO$_2$–Al mixtures

    Fizika Goreniya i Vzryva, 50:6 (2014),  21–27
  9. Macrokinetics of solid-phase synthesis of an activated 3Ni + Al mixture in the thermal explosion mode

    Fizika Goreniya i Vzryva, 46:4 (2010),  90–98
  10. Combustion of mechanically activated 3Ti + 2BN mixtures

    Fizika Goreniya i Vzryva, 46:2 (2010),  59–67
  11. High-energy methods of creating a mesocomposite material with inclusions containing nanocrystalline particles

    Fizika Goreniya i Vzryva, 46:1 (2010),  126–131
  12. Thermal explosion of a mechanically activated 3Ni-Al mixture

    Fizika Goreniya i Vzryva, 46:1 (2010),  48–53
  13. Critical regimes of volume ignition of mechanically activated Ti–C–Ni mixtures

    Fizika Goreniya i Vzryva, 46:1 (2010),  36–42
  14. Structure formation during gas-detonation spraying of coatings from composite powders TiAl$_3$ and Ni$_3$Al

    Fizika Goreniya i Vzryva, 44:5 (2008),  106–111
  15. Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites

    Fizika Goreniya i Vzryva, 43:2 (2007),  58–71
  16. Self-propagating high-temperature synthesis of quasicrystals

    Fizika Goreniya i Vzryva, 40:4 (2004),  74–81
  17. Solid-state combustion in mechanically activated SHS systems. II. Effect of mechanical activation conditions on process parameters and combustion product composition

    Fizika Goreniya i Vzryva, 39:1 (2003),  60–68
  18. Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition

    Fizika Goreniya i Vzryva, 39:1 (2003),  51–59
  19. Mechanism and macrokinetics of reactions accompanying the combustion of SHS systems

    Fizika Goreniya i Vzryva, 23:5 (1987),  55–63
  20. Self-propagating high-temperature synthesis by the method of X-ray diffraction analysis using synchrotron radiation

    Fizika Goreniya i Vzryva, 19:4 (1983),  65–66
  21. An electron-microscope study of the interaction of titanium with carbon

    Fizika Goreniya i Vzryva, 17:1 (1981),  72–79
  22. Investigation of chemical transformations in the combustion of condensed systems

    Fizika Goreniya i Vzryva, 15:3 (1979),  48–53


© Steklov Math. Inst. of RAS, 2026