RUS  ENG
Full version
PEOPLE

Brodskii German Mikhailovich

Publications in Math-Net.Ru

  1. On representable functors in Morita theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  8–11
  2. The Grothendieck ${\rm AB}5^*$ condition and generalizations of the distributivity of a module

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 3,  3–13
  3. Countable distributivity, linear compactness and the $AB5^*$ condition in modules

    Dokl. Akad. Nauk, 346:6 (1996),  727–728
  4. Modules lattice isomorphic to linearly compact modules

    Mat. Zametki, 59:2 (1996),  174–181
  5. A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators

    Fundam. Prikl. Mat., 1:4 (1995),  1095–1099
  6. Annihilators and weak topologies on modules

    Fundam. Prikl. Mat., 1:2 (1995),  529–532
  7. Ring properties of endomorphism rings of modules

    Fundam. Prikl. Mat., 1:1 (1995),  301–304
  8. On the lattice of subtrees of a tree

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 3,  17–21
  9. $\mathrm{Hom}$ functors and lattices of submodules

    Tr. Mosk. Mat. Obs., 46 (1983),  164–186
  10. Dualities in modules and the $AB5^*$ condition

    Uspekhi Mat. Nauk, 38:2(230) (1983),  201–202
  11. On Morita equivalence and duality

    Uspekhi Mat. Nauk, 37:4(226) (1982),  145–146
  12. Annihilator conditions in endomorphism rings of modules

    Mat. Zametki, 16:6 (1974),  933–942
  13. Endomorphism rings of free modules

    Mat. Sb. (N.S.), 94(136):2(6) (1974),  226–242
  14. Torsions in modules

    Mat. Zametki, 14:4 (1973),  527–534
  15. Endomorphism rings of free modules over perfect rings

    Mat. Sb. (N.S.), 88(130):1(5) (1972),  137–147


© Steklov Math. Inst. of RAS, 2026