RUS  ENG
Full version
PEOPLE

Zenkov Viktor Ivanovich

Publications in Math-Net.Ru

  1. On intersections of $\pi$-Hall subgroups of some $D_\pi$-groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  19–35
  2. On intersection of abelian and minimal nonabelian subgroups in finite groups

    Vladikavkaz. Mat. Zh., 27:3 (2025),  75–81
  3. On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  54–66
  4. On Intersections of Certain Nilpotent Subgroups in Finite Groups

    Mat. Zametki, 112:1 (2022),  55–60
  5. On intersections of $\pi$-Hall subgroups in finite $D_\pi$-groups

    Sibirsk. Mat. Zh., 63:4 (2022),  866–869
  6. Intersections of three nilpotent subgroups in a finite group

    Sibirsk. Mat. Zh., 62:4 (2021),  764–783
  7. On the intersections of nilpotent subgroups in finite groups with socle $L_3(q)$ or $U_3(q)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  70–78
  8. Intersections of nilpotent subgroups in finite groups with sporadic socle

    Algebra Logika, 59:4 (2020),  458–470
  9. On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  32–43
  10. On Intersections of Abelian and Nilpotent Subgroups in Finite Groups. II

    Mat. Zametki, 105:3 (2019),  383–394
  11. Intersections of three nilpotent subgroups of finite groups

    Sibirsk. Mat. Zh., 60:4 (2019),  777–786
  12. On intersection of primary subgroups in the group $\mathrm {Aut(F_4(2))}$

    J. Sib. Fed. Univ. Math. Phys., 11:2 (2018),  171–177
  13. On intersections of primary subgroups pairs in finite group with socle $\Omega_{2n}^+(2^m)$

    Sib. Èlektron. Mat. Izv., 15 (2018),  728–732
  14. On intersection two nilpotent subgroups in small groups

    Sib. Èlektron. Mat. Izv., 15 (2018),  21–28
  15. Intersections of primary subgroups in nonsoluble finite groups isomorphic to $L_n(2^m)$

    Sibirsk. Mat. Zh., 59:2 (2018),  337–344
  16. On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  126–134
  17. On intersection of two nilpotent subgroups in finite group with socle $\Omega_8^+(2)$, $E_6(2)$ or $E_7(2)$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1424–1433
  18. On interesection of two nilpotent subgroups in small finite groups

    Sib. Èlektron. Mat. Izv., 13 (2016),  1099–1115
  19. Intersections of two nilpotent subgroups in finite groups with socle $L_2(q)$

    Sibirsk. Mat. Zh., 57:6 (2016),  1280–1290
  20. A criterion for the failure of local balance of some simple groups of Lie type

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  147–149
  21. Derived length of finite $p$-groups factorable by normal elementary Abelian subgroups

    Algebra Logika, 54:1 (2015),  92–94
  22. On intersections of abelian and nilpotent subgroups in finite groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  128–131
  23. On intersections of primary subgroups in the group Aut$(L_n(2))$

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  105–111
  24. On intersection of primary subgroups of odd order in finite almost simple groups

    Fundam. Prikl. Mat., 19:6 (2014),  115–123
  25. On intersections of triples of nilpotent subgroups in finite solvable groups

    Sib. Èlektron. Mat. Izv., 11 (2014),  207–209
  26. On intersections of nilpotent subgroups in finite symmetric and alternating groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  144–149
  27. On intersections of Sylow 2-subgroups in automorphism groups of finite simple groups of exceptional Lie type

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  92–101
  28. On intersections Sylov subgroups in finite groups, II

    Sib. Èlektron. Mat. Izv., 7 (2010),  42–51
  29. On the intersections of solvable Hall subgroups in finite groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  74–83
  30. On intersections Sylov subgroups in finite groups, I

    Vladikavkaz. Mat. Zh., 11:4 (2009),  16–21
  31. Finite groups in which the normalizers of pairwise intersections of Sylow 2-subgroups have odd indices

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007),  90–103
  32. On intersections of solvable Hall subgroups in finite nonsolvable groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007),  86–89
  33. An Analog for the Frattini Factorization of Finite Groups

    Algebra Logika, 43:2 (2004),  184–196
  34. On orders of intersections of Sylow $p$-subgroups in finite groups

    Algebra Logika, 36:2 (1997),  156–165
  35. On the intersection of Sylow subgroups in finite groups

    Algebra Logika, 35:4 (1996),  424–432
  36. Generation of finite groups by the class of conjugate abelian subgroups

    Algebra Logika, 35:3 (1996),  288–293
  37. The intersections of nilpotent subgroups in finite groups

    Fundam. Prikl. Mat., 2:1 (1996),  1–92
  38. On Burnside's $p^aq^b$-theorem

    Sibirsk. Mat. Zh., 37:3 (1996),  578–586
  39. About $p$-blocks of defect 0 in $p$-solvable groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  36–40
  40. Minimal $I(\pi)$-groups

    Izv. RAN. Ser. Mat., 58:3 (1994),  169–183
  41. Intersection of Abelian subgroups in finite groups

    Mat. Zametki, 56:2 (1994),  150–152
  42. A uniqueness theorem and intersections of nilpotent subgroups in finite groups

    Mat. Sb., 184:6 (1993),  151–159
  43. The structure of intersections of nilpotent $\pi$-subgroups in finite $\pi$-solvable groups

    Sibirsk. Mat. Zh., 34:4 (1993),  103–107
  44. Finite groups with given centralizer of a central involution

    Algebra Logika, 19:5 (1980),  566–581


© Steklov Math. Inst. of RAS, 2026