|
|
Publications in Math-Net.Ru
-
Bernstein-Type estimates for periodic functions of several variables with generalized smoothness
Mat. Zametki, 117:4 (2025), 626–629
-
Approximation of Periodic Functions of High Generalized Smoothness by Fourier Sums
Mat. Zametki, 115:2 (2024), 304–307
-
Direct Theorems on Approximation of Periodic Functions with High Generalized Smoothness
Mat. Zametki, 113:3 (2023), 477–480
-
Methods of trigonometric approximation and generalized smoothness. II
Eurasian Math. J., 13:4 (2022), 18–43
-
Inverse Theorems on the Approximation of Periodic Functions with High Generalized Smoothness
Mat. Zametki, 111:2 (2022), 312–315
-
Multiplicator type operators and approximation of periodic functions of one variable by trigonometric polynomials
Mat. Sb., 212:2 (2021), 106–137
-
Periodic Besov Spaces and Generalized Moduli of Smoothness
Mat. Zametki, 108:4 (2020), 617–621
-
Realizations of Mixed Generalized $K$-Functionals
Mat. Zametki, 107:2 (2020), 307–310
-
Generalized Smoothness and Approximation of Periodic Functions in the Spaces $L_p$, $1<p<+\infty$
Mat. Zametki, 106:3 (2019), 436–449
-
Trigonometric polynomial approximation, $K$-functionals and generalized moduli of smoothness
Mat. Sb., 208:2 (2017), 70–87
-
Mixed Generalized Modulus of Smoothness and Approximation by the “Angle” of Trigonometric Polynomials
Mat. Zametki, 100:3 (2016), 421–432
-
Approximation by Fourier Means and Generalized Moduli of Smoothness
Mat. Zametki, 99:4 (2016), 574–587
-
A Direct Theorem of Approximation Theory for a General Modulus of Smoothness
Mat. Zametki, 95:6 (2014), 899–910
-
Methods of trigonometric approximation and generalized smoothness. I
Eurasian Math. J., 2:3 (2011), 98–124
-
On families of linear polynomial operators generated by Riesz kernels
Eurasian Math. J., 1:4 (2010), 124–139
-
On convergence of families of linear polynomial operators generated by matrices of multipliers
Eurasian Math. J., 1:3 (2010), 112–133
-
Generalization of a theorem of Marcinkiewicz–Zygmund
Mat. Zametki, 57:2 (1995), 259–264
-
On approximation by families of linear polynomial operators in $l_P$-spaces, $0<p<1$
Mat. Sb., 185:8 (1994), 81–102
-
Direct and inverse theorems of approximation theory in the spaces $L_p$, $0<p<1$
Dokl. Akad. Nauk, 331:6 (1993), 684–686
-
On the smoothness module of a trigonometrical polynomial in the space $L_p$, $0<p<1$
Mat. Zametki, 54:5 (1993), 78–83
-
On families of linear polynomial operators in $L_p$-spaces, $0<p<1$
Mat. Sb., 184:2 (1993), 33–42
-
Approximation by algebraic polynomials in the spaces $L_p$, $0<p<1$
Dokl. Akad. Nauk, 323:2 (1992), 238–240
-
On approximation “by an angle” in $L_p$ spaces, $0<p<1$
Dokl. Akad. Nauk, 322:1 (1992), 45–47
-
An estimate for an integral modulus of smoothness
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 1, 78–80
-
A direct theorem on approximation “by angle” in the spaces $L_p$, $0<p<1$
Mat. Zametki, 52:5 (1992), 93–96
-
Relations between periodic and nonperiodic moduli of smoothness
Mat. Zametki, 52:2 (1992), 111–113
© , 2026