RUS  ENG
Full version
PEOPLE

Runovskii Konstantin Vsevolodovich

Publications in Math-Net.Ru

  1. Bernstein-Type estimates for periodic functions of several variables with generalized smoothness

    Mat. Zametki, 117:4 (2025),  626–629
  2. Approximation of Periodic Functions of High Generalized Smoothness by Fourier Sums

    Mat. Zametki, 115:2 (2024),  304–307
  3. Direct Theorems on Approximation of Periodic Functions with High Generalized Smoothness

    Mat. Zametki, 113:3 (2023),  477–480
  4. Methods of trigonometric approximation and generalized smoothness. II

    Eurasian Math. J., 13:4 (2022),  18–43
  5. Inverse Theorems on the Approximation of Periodic Functions with High Generalized Smoothness

    Mat. Zametki, 111:2 (2022),  312–315
  6. Multiplicator type operators and approximation of periodic functions of one variable by trigonometric polynomials

    Mat. Sb., 212:2 (2021),  106–137
  7. Periodic Besov Spaces and Generalized Moduli of Smoothness

    Mat. Zametki, 108:4 (2020),  617–621
  8. Realizations of Mixed Generalized $K$-Functionals

    Mat. Zametki, 107:2 (2020),  307–310
  9. Generalized Smoothness and Approximation of Periodic Functions in the Spaces $L_p$, $1<p<+\infty$

    Mat. Zametki, 106:3 (2019),  436–449
  10. Trigonometric polynomial approximation, $K$-functionals and generalized moduli of smoothness

    Mat. Sb., 208:2 (2017),  70–87
  11. Mixed Generalized Modulus of Smoothness and Approximation by the “Angle” of Trigonometric Polynomials

    Mat. Zametki, 100:3 (2016),  421–432
  12. Approximation by Fourier Means and Generalized Moduli of Smoothness

    Mat. Zametki, 99:4 (2016),  574–587
  13. A Direct Theorem of Approximation Theory for a General Modulus of Smoothness

    Mat. Zametki, 95:6 (2014),  899–910
  14. Methods of trigonometric approximation and generalized smoothness. I

    Eurasian Math. J., 2:3 (2011),  98–124
  15. On families of linear polynomial operators generated by Riesz kernels

    Eurasian Math. J., 1:4 (2010),  124–139
  16. On convergence of families of linear polynomial operators generated by matrices of multipliers

    Eurasian Math. J., 1:3 (2010),  112–133
  17. Generalization of a theorem of Marcinkiewicz–Zygmund

    Mat. Zametki, 57:2 (1995),  259–264
  18. On approximation by families of linear polynomial operators in $l_P$-spaces, $0<p<1$

    Mat. Sb., 185:8 (1994),  81–102
  19. Direct and inverse theorems of approximation theory in the spaces $L_p$, $0<p<1$

    Dokl. Akad. Nauk, 331:6 (1993),  684–686
  20. On the smoothness module of a trigonometrical polynomial in the space $L_p$, $0<p<1$

    Mat. Zametki, 54:5 (1993),  78–83
  21. On families of linear polynomial operators in $L_p$-spaces, $0<p<1$

    Mat. Sb., 184:2 (1993),  33–42
  22. Approximation by algebraic polynomials in the spaces $L_p$, $0<p<1$

    Dokl. Akad. Nauk, 323:2 (1992),  238–240
  23. On approximation “by an angle” in $L_p$ spaces, $0<p<1$

    Dokl. Akad. Nauk, 322:1 (1992),  45–47
  24. An estimate for an integral modulus of smoothness

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 1,  78–80
  25. A direct theorem on approximation “by angle” in the spaces $L_p$, $0<p<1$

    Mat. Zametki, 52:5 (1992),  93–96
  26. Relations between periodic and nonperiodic moduli of smoothness

    Mat. Zametki, 52:2 (1992),  111–113


© Steklov Math. Inst. of RAS, 2026