|
|
Publications in Math-Net.Ru
-
Quantum Markov states and quantum hidden Markov states
Zap. Nauchn. Sem. POMI, 468 (2018), 13–23
-
Erdős measures on the Euclidean space and on the group of $A$-adic integers
Trudy Mat. Inst. Steklova, 297 (2017), 38–45
-
Remarks on Quantum Markov States
Funktsional. Anal. i Prilozhen., 49:3 (2015), 60–65
-
Calculation of the entropy for a hidden Markov chain
Diskr. Mat., 24:1 (2012), 108–122
-
The entropy of the Erdos measure for the pseudogolden ratio
Teor. Veroyatnost. i Primenen., 57:1 (2012), 158–167
-
The Erdős–Vershik problem for the golden ratio
Funktsional. Anal. i Prilozhen., 44:2 (2010), 3–13
-
Erdős measures for the goldenshift and Markov chains of the second order
Teor. Veroyatnost. i Primenen., 51:1 (2006), 5–21
-
Erdős measures, sofic measures, and Markov chains
Zap. Nauchn. Sem. POMI, 326 (2005), 28–47
-
Concerning a stochastic dynamical system
Mat. Zametki, 61:6 (1997), 803–809
-
An Example of a Strange Nonchaotic Attractor
Funktsional. Anal. i Prilozhen., 30:4 (1996), 1–9
-
On the symmetric $\sigma$-algebra of a stationary Harris Markov process
Teor. Veroyatnost. i Primenen., 41:4 (1996), 869–877
-
On the variance of sums for functions of a stationary Markov process
Teor. Veroyatnost. i Primenen., 41:3 (1996), 633–639
-
Weak convergence of matrices of transition probabilities for the conditioned Markov chains
Teor. Veroyatnost. i Primenen., 27:1 (1982), 57–66
-
Conditional Markov chains with denumerable set of states
Teor. Veroyatnost. i Primenen., 22:3 (1977), 556–565
-
Ergodicity properties of conditional Markov chains
Teor. Veroyatnost. i Primenen., 19:3 (1974), 547–557
-
Ergodic properties of conditional Markov chains
Dokl. Akad. Nauk SSSR, 211:4 (1973), 761–763
-
Limit theorems for conditional Markov chains
Teor. Veroyatnost. i Primenen., 16:3 (1971), 437–445
-
Letter to the editors
Teor. Veroyatnost. i Primenen., 24:2 (1979), 443
© , 2026