RUS  ENG
Full version
PEOPLE

Zakharova Yuliya Viktorovna

Publications in Math-Net.Ru

  1. Evolutionary algorithms for customer order scheduling

    Bulletin of Irkutsk State University. Series Mathematics, 53 (2025),  3–17
  2. Constructive algorithms for the scheduling problem on two processors with the maximum time offset criterion taking into account parallelization and energy consumption

    Prikl. Diskr. Mat., 2025, no. 67,  118–128
  3. Models and local search algorithms for vehicle routing with returns and time windows

    Bulletin of Irkutsk State University. Series Mathematics, 48 (2024),  95–110
  4. Approximation algorithms for Open Shop variations subject to energy consumption

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  117–133
  5. Minimizing makespan for parallelizable jobs with energy constraint

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  586–600
  6. The reduction of the Pareto set of a special structure in bicriteria discrete problems

    Diskretn. Anal. Issled. Oper., 28:4 (2021),  90–116
  7. Approximate schedules for non-migratory parallel jobs in speed-scaled multiprocessor systems

    Sib. Èlektron. Mat. Izv., 16 (2019),  249–257
  8. Construction and reduction of the Pareto set in asymmetric travelling salesman problem with two criteria

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:4 (2018),  378–392
  9. On complexity of optimal recombination for flowshop scheduling problems

    Diskretn. Anal. Issled. Oper., 23:2 (2016),  41–62
  10. Polynomially Solvable Cases of the Project Scheduling Problem with Changing Consumption and Supply Rates of Nonaccumulative Resources

    Bulletin of Irkutsk State University. Series Mathematics, 9 (2014),  26–38
  11. On the calendar planning problem with renewable resource

    Avtomat. i Telemekh., 2012, no. 6,  140–153
  12. On complexity of optimal recombination for one scheduling problem with setup times

    Diskretn. Anal. Issled. Oper., 19:3 (2012),  13–26
  13. On scheduling with technology based machines grouping

    Diskretn. Anal. Issled. Oper., 18:5 (2011),  54–79


© Steklov Math. Inst. of RAS, 2026