RUS  ENG
Full version
PEOPLE

Starovoitov Victor Nikolayevich

Publications in Math-Net.Ru

  1. Inverse problem on chaotic dynamics of a polymer molecule

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  1167–1180
  2. Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1597–1604
  3. Homogenization of a periodic elastic structure saturated with a Maxwell fluid

    Sib. Zh. Ind. Mat., 25:3 (2022),  170–188
  4. Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1714–1719
  5. Unique solvability of a linear parabolic problem with nonlocal time data

    Sibirsk. Mat. Zh., 62:2 (2021),  417–421
  6. Initial boundary value problem for a nonlocal in time parabolic equation

    Sib. Èlektron. Mat. Izv., 15 (2018),  1311–1319
  7. The steady problem of the motion of a rigid ball in a Stokes–Poiseuille flow: differentiability of the solution with respect to the ball position

    Sib. Èlektron. Mat. Izv., 14 (2017),  864–876
  8. Solvability of the unsteady problem of the motion of a rigid body in a flow of a viscous incompressible fluid in a pipe of arbitrary section

    Sib. Zh. Ind. Mat., 20:3 (2017),  80–91
  9. Steady motion of a ball in a Stokes–Poiseuille flow

    Sib. Zh. Ind. Mat., 18:3 (2015),  76–85
  10. Optimal control of cylinder rotation in a viscous fluid

    Sib. Zh. Ind. Mat., 16:1 (2013),  95–105
  11. Mathematical Model of Dynamics of an Elastic Body in a Viscous Incompressible Fluid

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009),  76–89
  12. Problem on a drift of a rigid body in a viscous fluid

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:2 (2006),  88–102
  13. Non-uniqueness of the solution to the problem of a motion of a rigid body in a viscous incompressible fluid

    Zap. Nauchn. Sem. POMI, 306 (2003),  199–209
  14. The dynamics of a two-component fluid in the presence of capillary forces

    Mat. Zametki, 62:2 (1997),  293–305
  15. Model of the motion of a two-component liquid with allowance of capillary forces

    Prikl. Mekh. Tekh. Fiz., 35:6 (1994),  85–92
  16. Uniqueness of a solution to the problem of evolution of a point vortex

    Sibirsk. Mat. Zh., 35:3 (1994),  696–701
  17. Representation of a solution to the problem of evolution of a point vortex in an ideal fluid

    Sibirsk. Mat. Zh., 35:2 (1994),  446–458
  18. The Stefan problem with surface tension as a limit of the phase field model

    Differ. Uravn., 29:3 (1993),  461–471


© Steklov Math. Inst. of RAS, 2026