Publications in Math-Net.Ru
-
Maximal isotropic subspaces of a skew-symmetric bilinear mapping
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 4, 3–5
-
Noncompact leaves of foliations of Morse forms
Mat. Zametki, 63:6 (1998), 862–865
-
Properties of Morse forms that determine compact foliations on $M^2_g$
Mat. Zametki, 60:6 (1996), 942–945
-
Singular points of a Morse form, and foliations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4, 37–40
-
A test for compactness of a foliation
Mat. Zametki, 58:6 (1995), 872–877
-
A test for non-compactness of the foliation of a Morse form
Uspekhi Mat. Nauk, 50:2(302) (1995), 217–218
-
A condition for the noncompactness of a foliation on $M_g^2$
Mat. Zametki, 53:3 (1993), 158–160
© , 2026