RUS  ENG
Full version
PEOPLE

Kulikov Gennady Yur'evich

Publications in Math-Net.Ru

  1. Nested implicit Runge–Kutta pairs of Gauss and Lobatto types with local and global error controls for stiff ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020),  1170–1192
  2. Embedded symmetric nested implicit Runge–Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems

    Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015),  986–1007
  3. Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods

    Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014),  591–607
  4. Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods

    Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  2004–2022
  5. On the global error control in nested implicit Runge–Kutta methods of Gauss type

    Sib. Zh. Vychisl. Mat., 14:3 (2011),  245–259
  6. On the automatic control of step size and order in one-step collocation methods with higher derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010),  1060–1077
  7. Automatic step size and order control in implicit one-step extrapolation methods

    Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1580–1606
  8. Automatic step size and order control in explicit one-step extrapolation methods

    Zh. Vychisl. Mat. Mat. Fiz., 48:8 (2008),  1392–1405
  9. On one-step collocation methods with higher derivatives for solving ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004),  1782–1807
  10. On multistep methods of the interpolation type with an automated checking of the global error

    Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1388–1409
  11. On the efficient computation of asymptotically sharp estimates for local and global errors in multistep methods with constant coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004),  840–861
  12. Implicit extrapolational methods for systems of differential-algebraic equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 5,  3–7
  13. On numerical solution of large-scale systems of index 1 differential-algebraic equations

    Fundam. Prikl. Mat., 7:4 (2001),  1047–1080
  14. On using Newton-type iterative methods for solving systems of differential-algebraic equations of index 1

    Zh. Vychisl. Mat. Mat. Fiz., 41:8 (2001),  1180–1189
  15. On symmetry of some Runge–Kutta methods

    Fundam. Prikl. Mat., 6:4 (2000),  1131–1140
  16. A technique for controlling the global error in multistep methods

    Zh. Vychisl. Mat. Mat. Fiz., 40:9 (2000),  1308–1329
  17. On pseudodiagonally optimal Runge-Kutta simple iteration methods for systems of differential-algebraic equations of index $1$

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  1071–1089
  18. Asymptotic error estimates for the method of simple iteration and for the modified and generalized Newton methods

    Mat. Zametki, 63:4 (1998),  562–571
  19. A method of error analysis for Runge–Kutta methods

    Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998),  1651–1653
  20. Numerical solution of the Cauchy problem for a system of differential-algebraic equations with the use of implicit Runge–Kutta methods with a nontrivial predictor

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  68–84
  21. On the numerical solution of the Cauchy problem for a system of differential-algebraic equations by means of implicit Runge–Kutta methods with a variable integration step

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 5,  7–11
  22. Convergence theorems for iterative Runge–Kutta methods with a constant integration step

    Zh. Vychisl. Mat. Mat. Fiz., 36:8 (1996),  73–89
  23. Practical realization and efficiency of numerical methods for solving the Cauchy problem with an algebraic constraint

    Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994),  1617–1631
  24. On the numerical solution of an autonomous Cauchy problem with an algebraic constraint on the phase variables (the nonsingular case)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 3,  10–14
  25. The numerical solution of the autonomous Cauchy problem with algebraic constraints on the phase variables

    Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993),  522–540
  26. A method for the numerical solution of the autonomous Cauchy problem with an algebraic restriction on the phase variables

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 1,  14–19


© Steklov Math. Inst. of RAS, 2026