|
|
Publications in Math-Net.Ru
-
Nested implicit Runge–Kutta pairs of Gauss and Lobatto types with local and global error controls for stiff ordinary differential equations
Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020), 1170–1192
-
Embedded symmetric nested implicit Runge–Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems
Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015), 986–1007
-
Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods
Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014), 591–607
-
Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods
Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 2004–2022
-
On the global error control in nested implicit Runge–Kutta methods of Gauss type
Sib. Zh. Vychisl. Mat., 14:3 (2011), 245–259
-
On the automatic control of step size and order in one-step collocation methods with higher derivatives
Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010), 1060–1077
-
Automatic step size and order control in implicit one-step extrapolation methods
Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008), 1580–1606
-
Automatic step size and order control in explicit one-step extrapolation methods
Zh. Vychisl. Mat. Mat. Fiz., 48:8 (2008), 1392–1405
-
On one-step collocation methods with higher derivatives for solving ordinary differential equations
Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004), 1782–1807
-
On multistep methods of the interpolation type with an automated checking of the global error
Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004), 1388–1409
-
On the efficient computation of asymptotically sharp estimates for local and global errors in multistep methods with constant coefficients
Zh. Vychisl. Mat. Mat. Fiz., 44:5 (2004), 840–861
-
Implicit extrapolational methods for systems of differential-algebraic equations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 5, 3–7
-
On numerical solution of large-scale systems of index 1 differential-algebraic equations
Fundam. Prikl. Mat., 7:4 (2001), 1047–1080
-
On using Newton-type iterative methods for solving systems of differential-algebraic equations of index 1
Zh. Vychisl. Mat. Mat. Fiz., 41:8 (2001), 1180–1189
-
On symmetry of some Runge–Kutta methods
Fundam. Prikl. Mat., 6:4 (2000), 1131–1140
-
A technique for controlling the global error in multistep methods
Zh. Vychisl. Mat. Mat. Fiz., 40:9 (2000), 1308–1329
-
On pseudodiagonally optimal Runge-Kutta simple iteration methods for systems of differential-algebraic equations of index $1$
Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000), 1071–1089
-
Asymptotic error estimates for the method of simple iteration and for the modified and generalized Newton methods
Mat. Zametki, 63:4 (1998), 562–571
-
A method of error analysis for Runge–Kutta methods
Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998), 1651–1653
-
Numerical solution of the Cauchy problem for a system of differential-algebraic equations with the use of implicit Runge–Kutta methods with a nontrivial predictor
Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998), 68–84
-
On the numerical solution of the Cauchy problem for a system of differential-algebraic equations by means of implicit
Runge–Kutta methods with a variable integration step
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 5, 7–11
-
Convergence theorems for iterative Runge–Kutta methods with a constant integration step
Zh. Vychisl. Mat. Mat. Fiz., 36:8 (1996), 73–89
-
Practical realization and efficiency of numerical methods for solving the Cauchy problem with an algebraic constraint
Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994), 1617–1631
-
On the numerical solution of an autonomous Cauchy problem with an algebraic constraint on the phase variables (the nonsingular case)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 3, 10–14
-
The numerical solution of the autonomous Cauchy problem with algebraic constraints on the phase variables
Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993), 522–540
-
A method for the numerical solution of the autonomous Cauchy problem with an algebraic restriction on the phase variables
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 1, 14–19
© , 2026