|
|
Publications in Math-Net.Ru
-
Mathematical and numerical modeling of the pluripotency gene network dynamics
Sib. Zh. Vychisl. Mat., 28:1 (2025), 37–46
-
On stability of cycles in some piecewise dynamical systems of mathematical biology
Mathematical notes of NEFU, 32:1 (2025), 4–14
-
On non-uniqueness of cycles in 3D models of circular gene networks
Chelyab. Fiz.-Mat. Zh., 9:1 (2024), 23–34
-
On nonlocal oscillations in 3D models of circular gene networks
Sib. Zh. Ind. Mat., 27:2 (2024), 34–42
-
Numerical and mathematical modeling of a gene network with non-linear degradation of components
Sib. Zh. Vychisl. Mat., 27:1 (2024), 1–10
-
On a hidden attractor of one asymmetric gene network model
Mathematical notes of NEFU, 31:2 (2024), 4–14
-
On non-local oscillations in gene networks models
Mathematical notes of NEFU, 31:1 (2024), 8–21
-
The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects
Sib. Zh. Ind. Mat., 26:3 (2023), 142–153
-
Phase portraits of two nonlinear models of circular gene networks
Mathematical notes of NEFU, 30:2 (2023), 3–13
-
On invariant surfaces in phase portraits
of circular gene networks models
Sib. Zh. Ind. Mat., 25:4 (2022), 5–13
-
On one numerical model of a circadian oscillator
Sib. Zh. Vychisl. Mat., 25:3 (2022), 227–240
-
On uniqueness of a cycle in one circular gene network model
Sibirsk. Mat. Zh., 63:1 (2022), 95–103
-
On uniqueness and stability of a cycle in one gene network
Sib. Èlektron. Mat. Izv., 18:1 (2021), 464–473
-
Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians
Sib. Zh. Ind. Mat., 24:4 (2021), 39–53
-
On stucture of phase portrait of one 5-dimensional gene network model
Sib. Zh. Ind. Mat., 24:3 (2021), 19–29
-
Phase portraits of two gene networks models
Mathematical notes of NEFU, 28:1 (2021), 3–11
-
О неединственности циклов в некоторых кусочно-линейных моделях кольцевых генных сетей
Mat. Tr., 23:1 (2020), 107–122
-
Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila
Sib. Zh. Ind. Mat., 23:2 (2020), 41–50
-
Structure of the phase portrait of a piecewise-linear dynamical system
Sib. Zh. Ind. Mat., 22:4 (2019), 19–25
-
Monotonicity of the Poincaré mapping in some models of circular gene networks
Sib. Zh. Ind. Mat., 22:3 (2019), 39–47
-
Mathematical and numerical models of two asymmetric gene networks
Sib. Èlektron. Mat. Izv., 15 (2018), 1271–1283
-
Cycles in the odd-dimensional models of circular gene networks
Sib. Zh. Ind. Mat., 21:4 (2018), 28–38
-
Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models
Sib. J. Pure and Appl. Math., 18:4 (2018), 19–28
-
On existence of a cycle in one asymmetric gene network model
Sib. J. Pure and Appl. Math., 18:3 (2018), 27–35
-
On cycles in models of functioning of circular gene networks
Sib. J. Pure and Appl. Math., 18:1 (2018), 54–63
-
A three-cell model of the initial stage of the development of one proneural cluster
Sib. Zh. Ind. Mat., 20:2 (2017), 15–20
-
On existence of a cycle in one asymmetric model of a molecular repressilator
Sib. Zh. Vychisl. Mat., 20:2 (2017), 121–129
-
On one piecewise linear dynamical system which models a gene network with variable feedback
Sib. J. Pure and Appl. Math., 16:4 (2016), 28–37
-
On two classes of nonlinear dynamical systems: The four-dimensional case
Sibirsk. Mat. Zh., 56:2 (2015), 282–289
-
On structure of phase portraits of some nonlinear dynamical systems
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:1 (2015), 45–53
-
On the uniqueness of a cycle in an asymmetric $3$-dimensional model of a molecular repressilator
Sib. Zh. Ind. Mat., 17:1 (2014), 3–7
-
Mathematical Modeling of Interaction of Two Cells in the Proneural Cluster of the Wing Imaginal Disk of D. Melanogaster
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:4 (2014), 3–10
-
On some many-dimensional models of the functioning of gene networks
Sib. Zh. Ind. Mat., 16:1 (2013), 3–9
-
Inversion of mapping and inverse problems
Sib. Èlektron. Mat. Izv., 9 (2012), 382–432
-
On One Class of Integral Geometry Problems with Incomplete Data
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012), 46–60
-
Geometric characteristics of cycles in some symmetric dynamical systems
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012), 3–12
-
Mathematical modeling of the first phase of morphogenesis of mechanoreceptors in D. melanogaster
Sib. Zh. Ind. Mat., 14:3 (2011), 14–19
-
Реконструкция невыпуклых объектов по прямолинейным и круговым проекциям
Sib. Èlektron. Mat. Izv., 7 (2010), 62–72
-
On multidimensional models of gene networks
Sib. Zh. Ind. Mat., 13:3 (2010), 13–18
-
On the existence and stability of cycles in five-dimensional models of gene networks
Sib. Zh. Vychisl. Mat., 13:4 (2010), 403–411
-
On Periodic Trajectories of Nonlinear Dynamical Systems of a Special Type
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 3–16
-
On Some Nonlinear Dynamical Systems Modeling Asymmetric Gene Networks. Part 2
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:1 (2010), 18–28
-
Some extensions of the class of $k$-convex bodies
Sibirsk. Mat. Zh., 50:5 (2009), 1037–1049
-
On convexity of a planar domain with a pair of concave tomography projections
Mat. Tr., 11:2 (2008), 107–114
-
On some nonlinear dynamical systems modelling asymmetric gene networks
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007), 19–27
-
On correlation of the information biotest data and the ecoanalytical control of an environment in areas of petroleum extracting
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007), 3–8
-
Investigation of phase portraits of three-dimensional models of gene networks
Sib. Zh. Ind. Mat., 9:1 (2006), 75–84
-
The central slice theorem generalization for a fan-beam tomography
Num. Meth. Prog., 7:2 (2006), 180–184
-
Modeling calibration functions for the technologies of system analysis of quality and certification of biomaterials
Sib. Zh. Ind. Mat., 8:3 (2005), 3–7
-
We establish polarization-statistical properties of the signals in the quantum information and cryptography systems
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:4 (2005), 3–13
-
A quasistatic model of nonlinear generation on ions of a magnetoactive plasma
Sib. Zh. Ind. Mat., 7:4 (2004), 59–65
-
Mathematical modeling of self-interaction of the plasma of a stationary heavy-current discharge
Sib. Zh. Ind. Mat., 7:3 (2004), 76–83
-
Mathematical modelling of heterogenous charge transfer in solid nanostructures under resonance radiation
Sib. Zh. Ind. Mat., 6:2 (2003), 31–36
-
A one-dimensional model of the development of amphibian populations
Sib. Zh. Ind. Mat., 5:2 (2002), 53–60
-
Fractal model of electric conductivity for oil-saturated media
Sib. Zh. Ind. Mat., 2:2 (1999), 36–41
-
On a method of fractal simulation of seismic prospecting of oil-saturated systems
Sib. Zh. Ind. Mat., 2:1 (1999), 41–46
-
On a mathematical model of polarization methods of impulsive laser nephelometry of dispersible biosystems
Sib. Zh. Ind. Mat., 2:1 (1999), 5–12
-
On the unique reconstruction of convex compact sets from their projections, the case of complex spaces
Sibirsk. Mat. Zh., 40:4 (1999), 805–810
-
On Formal Solutions to Multidimensional Evolution Equations
Mat. Tr., 1:2 (1998), 3–23
-
Mathematical modeling of nonlinear dynamics of strong radiation which appears in laser nephelometric analysis of dispersed biological media
Sib. Zh. Ind. Mat., 1:2 (1998), 14–23
-
An inverse problem for the Hamilton–Jacobi equation on a closed manifold
Sibirsk. Mat. Zh., 38:2 (1997), 276–279
-
On unique reconstructibility of convex and visible compact sets from their projections. II
Sibirsk. Mat. Zh., 36:2 (1995), 301–307
-
Stability problems of the reconstruction of some compacta from
their projections
Dokl. Akad. Nauk, 322:1 (1992), 20–21
-
Stability questions in some inverse problems of the reconstruction of convex compact sets from their projections
Sibirsk. Mat. Zh., 33:3 (1992), 50–57
-
On unique recoverability of convex and visible compacta from their projections
Mat. Sb., 182:5 (1991), 611–621
-
On the unique reconstructibility of compact convex sets from their projections
Sibirsk. Mat. Zh., 31:6 (1990), 196–199
-
Bordism rings with split normal bundles. II
Sibirsk. Mat. Zh., 30:5 (1989), 42–48
-
Chronogeometric and topological structures of spaces with variable
signature of the metric
Dokl. Akad. Nauk SSSR, 299:5 (1988), 1106–1108
-
On the unique determination of visible bodies from their projections
Sibirsk. Mat. Zh., 29:5 (1988), 92–96
-
Some cohomotopy properties of Thom spaces
Sibirsk. Mat. Zh., 27:2 (1986), 202–205
-
Integral submanifolds of phase spaces and cohomotopies
Dokl. Akad. Nauk SSSR, 280:1 (1985), 27–29
-
Manifolds with split (into halves) stable normal bundles in phase spaces
Funktsional. Anal. i Prilozhen., 18:2 (1984), 63–64
-
Trajectories of a dynamical system defined by a one-parameter group of conformal transformations of $\mathbf{R}^3$
Sibirsk. Mat. Zh., 24:1 (1983), 63–67
-
On reconstructing the shape of a body from its projections
Dokl. Akad. Nauk SSSR, 262:3 (1982), 521–522
-
An algebraic spectral sequence
Sibirsk. Mat. Zh., 21:1 (1980), 202–207
-
Bordism rings with split normal bundles
Uspekhi Mat. Nauk, 34:6(210) (1979), 150–154
-
A theory of cobordisms
Sibirsk. Mat. Zh., 20:2 (1979), 263–269
-
Süss's lemma and inverse problems
Sib. Èlektron. Mat. Izv., 9 (2012), 16–19
-
Mikhail Mikhailovich Lavrent'ev (on the occasion of his seventieth birthday)
Sib. Zh. Ind. Mat., 5:2 (2002), 3–6
© , 2026