RUS  ENG
Full version
PEOPLE

Golubyatnikov Vladimir Petrovich

Publications in Math-Net.Ru

  1. Mathematical and numerical modeling of the pluripotency gene network dynamics

    Sib. Zh. Vychisl. Mat., 28:1 (2025),  37–46
  2. On stability of cycles in some piecewise dynamical systems of mathematical biology

    Mathematical notes of NEFU, 32:1 (2025),  4–14
  3. On non-uniqueness of cycles in 3D models of circular gene networks

    Chelyab. Fiz.-Mat. Zh., 9:1 (2024),  23–34
  4. On nonlocal oscillations in 3D models of circular gene networks

    Sib. Zh. Ind. Mat., 27:2 (2024),  34–42
  5. Numerical and mathematical modeling of a gene network with non-linear degradation of components

    Sib. Zh. Vychisl. Mat., 27:1 (2024),  1–10
  6. On a hidden attractor of one asymmetric gene network model

    Mathematical notes of NEFU, 31:2 (2024),  4–14
  7. On non-local oscillations in gene networks models

    Mathematical notes of NEFU, 31:1 (2024),  8–21
  8. The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects

    Sib. Zh. Ind. Mat., 26:3 (2023),  142–153
  9. Phase portraits of two nonlinear models of circular gene networks

    Mathematical notes of NEFU, 30:2 (2023),  3–13
  10. On invariant surfaces in phase portraits of circular gene networks models

    Sib. Zh. Ind. Mat., 25:4 (2022),  5–13
  11. On one numerical model of a circadian oscillator

    Sib. Zh. Vychisl. Mat., 25:3 (2022),  227–240
  12. On uniqueness of a cycle in one circular gene network model

    Sibirsk. Mat. Zh., 63:1 (2022),  95–103
  13. On uniqueness and stability of a cycle in one gene network

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  464–473
  14. Conditions of existence of cycles in two basic models of circadian oscillator of Mammalians

    Sib. Zh. Ind. Mat., 24:4 (2021),  39–53
  15. On stucture of phase portrait of one 5-dimensional gene network model

    Sib. Zh. Ind. Mat., 24:3 (2021),  19–29
  16. Phase portraits of two gene networks models

    Mathematical notes of NEFU, 28:1 (2021),  3–11
  17. О неединственности циклов в некоторых кусочно-линейных моделях кольцевых генных сетей

    Mat. Tr., 23:1 (2020),  107–122
  18. Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of Drosophila

    Sib. Zh. Ind. Mat., 23:2 (2020),  41–50
  19. Structure of the phase portrait of a piecewise-linear dynamical system

    Sib. Zh. Ind. Mat., 22:4 (2019),  19–25
  20. Monotonicity of the Poincaré mapping in some models of circular gene networks

    Sib. Zh. Ind. Mat., 22:3 (2019),  39–47
  21. Mathematical and numerical models of two asymmetric gene networks

    Sib. Èlektron. Mat. Izv., 15 (2018),  1271–1283
  22. Cycles in the odd-dimensional models of circular gene networks

    Sib. Zh. Ind. Mat., 21:4 (2018),  28–38
  23. Uniqueness and stability of a cycle in three-dimensional block-linear circular gene network models

    Sib. J. Pure and Appl. Math., 18:4 (2018),  19–28
  24. On existence of a cycle in one asymmetric gene network model

    Sib. J. Pure and Appl. Math., 18:3 (2018),  27–35
  25. On cycles in models of functioning of circular gene networks

    Sib. J. Pure and Appl. Math., 18:1 (2018),  54–63
  26. A three-cell model of the initial stage of the development of one proneural cluster

    Sib. Zh. Ind. Mat., 20:2 (2017),  15–20
  27. On existence of a cycle in one asymmetric model of a molecular repressilator

    Sib. Zh. Vychisl. Mat., 20:2 (2017),  121–129
  28. On one piecewise linear dynamical system which models a gene network with variable feedback

    Sib. J. Pure and Appl. Math., 16:4 (2016),  28–37
  29. On two classes of nonlinear dynamical systems: The four-dimensional case

    Sibirsk. Mat. Zh., 56:2 (2015),  282–289
  30. On structure of phase portraits of some nonlinear dynamical systems

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:1 (2015),  45–53
  31. On the uniqueness of a cycle in an asymmetric $3$-dimensional model of a molecular repressilator

    Sib. Zh. Ind. Mat., 17:1 (2014),  3–7
  32. Mathematical Modeling of Interaction of Two Cells in the Proneural Cluster of the Wing Imaginal Disk of D. Melanogaster

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:4 (2014),  3–10
  33. On some many-dimensional models of the functioning of gene networks

    Sib. Zh. Ind. Mat., 16:1 (2013),  3–9
  34. Inversion of mapping and inverse problems

    Sib. Èlektron. Mat. Izv., 9 (2012),  382–432
  35. On One Class of Integral Geometry Problems with Incomplete Data

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012),  46–60
  36. Geometric characteristics of cycles in some symmetric dynamical systems

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:2 (2012),  3–12
  37. Mathematical modeling of the first phase of morphogenesis of mechanoreceptors in D. melanogaster

    Sib. Zh. Ind. Mat., 14:3 (2011),  14–19
  38. Реконструкция невыпуклых объектов по прямолинейным и круговым проекциям

    Sib. Èlektron. Mat. Izv., 7 (2010),  62–72
  39. On multidimensional models of gene networks

    Sib. Zh. Ind. Mat., 13:3 (2010),  13–18
  40. On the existence and stability of cycles in five-dimensional models of gene networks

    Sib. Zh. Vychisl. Mat., 13:4 (2010),  403–411
  41. On Periodic Trajectories of Nonlinear Dynamical Systems of a Special Type

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010),  3–16
  42. On Some Nonlinear Dynamical Systems Modeling Asymmetric Gene Networks. Part 2

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:1 (2010),  18–28
  43. Some extensions of the class of $k$-convex bodies

    Sibirsk. Mat. Zh., 50:5 (2009),  1037–1049
  44. On convexity of a planar domain with a pair of concave tomography projections

    Mat. Tr., 11:2 (2008),  107–114
  45. On some nonlinear dynamical systems modelling asymmetric gene networks

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007),  19–27
  46. On correlation of the information biotest data and the ecoanalytical control of an environment in areas of petroleum extracting

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007),  3–8
  47. Investigation of phase portraits of three-dimensional models of gene networks

    Sib. Zh. Ind. Mat., 9:1 (2006),  75–84
  48. The central slice theorem generalization for a fan-beam tomography

    Num. Meth. Prog., 7:2 (2006),  180–184
  49. Modeling calibration functions for the technologies of system analysis of quality and certification of biomaterials

    Sib. Zh. Ind. Mat., 8:3 (2005),  3–7
  50. We establish polarization-statistical properties of the signals in the quantum information and cryptography systems

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:4 (2005),  3–13
  51. A quasistatic model of nonlinear generation on ions of a magnetoactive plasma

    Sib. Zh. Ind. Mat., 7:4 (2004),  59–65
  52. Mathematical modeling of self-interaction of the plasma of a stationary heavy-current discharge

    Sib. Zh. Ind. Mat., 7:3 (2004),  76–83
  53. Mathematical modelling of heterogenous charge transfer in solid nanostructures under resonance radiation

    Sib. Zh. Ind. Mat., 6:2 (2003),  31–36
  54. A one-dimensional model of the development of amphibian populations

    Sib. Zh. Ind. Mat., 5:2 (2002),  53–60
  55. Fractal model of electric conductivity for oil-saturated media

    Sib. Zh. Ind. Mat., 2:2 (1999),  36–41
  56. On a method of fractal simulation of seismic prospecting of oil-saturated systems

    Sib. Zh. Ind. Mat., 2:1 (1999),  41–46
  57. On a mathematical model of polarization methods of impulsive laser nephelometry of dispersible biosystems

    Sib. Zh. Ind. Mat., 2:1 (1999),  5–12
  58. On the unique reconstruction of convex compact sets from their projections, the case of complex spaces

    Sibirsk. Mat. Zh., 40:4 (1999),  805–810
  59. On Formal Solutions to Multidimensional Evolution Equations

    Mat. Tr., 1:2 (1998),  3–23
  60. Mathematical modeling of nonlinear dynamics of strong radiation which appears in laser nephelometric analysis of dispersed biological media

    Sib. Zh. Ind. Mat., 1:2 (1998),  14–23
  61. An inverse problem for the Hamilton–Jacobi equation on a closed manifold

    Sibirsk. Mat. Zh., 38:2 (1997),  276–279
  62. On unique reconstructibility of convex and visible compact sets from their projections. II

    Sibirsk. Mat. Zh., 36:2 (1995),  301–307
  63. Stability problems of the reconstruction of some compacta from their projections

    Dokl. Akad. Nauk, 322:1 (1992),  20–21
  64. Stability questions in some inverse problems of the reconstruction of convex compact sets from their projections

    Sibirsk. Mat. Zh., 33:3 (1992),  50–57
  65. On unique recoverability of convex and visible compacta from their projections

    Mat. Sb., 182:5 (1991),  611–621
  66. On the unique reconstructibility of compact convex sets from their projections

    Sibirsk. Mat. Zh., 31:6 (1990),  196–199
  67. Bordism rings with split normal bundles. II

    Sibirsk. Mat. Zh., 30:5 (1989),  42–48
  68. Chronogeometric and topological structures of spaces with variable signature of the metric

    Dokl. Akad. Nauk SSSR, 299:5 (1988),  1106–1108
  69. On the unique determination of visible bodies from their projections

    Sibirsk. Mat. Zh., 29:5 (1988),  92–96
  70. Some cohomotopy properties of Thom spaces

    Sibirsk. Mat. Zh., 27:2 (1986),  202–205
  71. Integral submanifolds of phase spaces and cohomotopies

    Dokl. Akad. Nauk SSSR, 280:1 (1985),  27–29
  72. Manifolds with split (into halves) stable normal bundles in phase spaces

    Funktsional. Anal. i Prilozhen., 18:2 (1984),  63–64
  73. Trajectories of a dynamical system defined by a one-parameter group of conformal transformations of $\mathbf{R}^3$

    Sibirsk. Mat. Zh., 24:1 (1983),  63–67
  74. On reconstructing the shape of a body from its projections

    Dokl. Akad. Nauk SSSR, 262:3 (1982),  521–522
  75. An algebraic spectral sequence

    Sibirsk. Mat. Zh., 21:1 (1980),  202–207
  76. Bordism rings with split normal bundles

    Uspekhi Mat. Nauk, 34:6(210) (1979),  150–154
  77. A theory of cobordisms

    Sibirsk. Mat. Zh., 20:2 (1979),  263–269

  78. Süss's lemma and inverse problems

    Sib. Èlektron. Mat. Izv., 9 (2012),  16–19
  79. Mikhail Mikhailovich Lavrent'ev (on the occasion of his seventieth birthday)

    Sib. Zh. Ind. Mat., 5:2 (2002),  3–6


© Steklov Math. Inst. of RAS, 2026