|
|
Publications in Math-Net.Ru
-
An integral formula for the number of lattice points in a domain
J. Sib. Fed. Univ. Math. Phys., 8:2 (2015), 134–139
-
On the Bohr radius for two classes of holomorphic functions
Sibirsk. Mat. Zh., 45:4 (2004), 734–746
-
Some remarks on the Bohr radius for power series
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 10, 3–10
-
Variations on the theme of the Morera theorem and the Pompeiu
problem
Dokl. Akad. Nauk, 337:6 (1994), 709–712
-
On the property of uniqueness and existence of a limit in Carleman's formulas
Trudy Mat. Inst. Steklov., 203 (1994), 3–12
-
The moment condition in a problem with a free boundary for $CR$-functions
Dokl. Akad. Nauk, 330:3 (1993), 277–279
-
On the possibility of holomorphic extension, into a domain, of functions defined on a connected piece of its boundary. II
Mat. Sb., 184:1 (1993), 3–14
-
Carleman formulas with a holomorphic kernel and with integration over boundary sets of maximal dimension
Dokl. Akad. Nauk, 325:6 (1992), 1095–1098
-
Holomorphic continuation of functions from a part of the domain
boundary
Dokl. Akad. Nauk SSSR, 321:6 (1991), 1129–1132
-
On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary
Mat. Sb., 182:4 (1991), 490–507
-
Conditionally stable linear problems and the Carleman formula
Sibirsk. Mat. Zh., 31:6 (1990), 9–15
-
Reconstruction of holomorphic and pluriharmonic functions in circular domains from values on the torus
Sibirsk. Mat. Zh., 30:1 (1989), 175–177
-
An estimate of the stability of interpolation of signals with a finite Fourier spectrum and a computational experiment
Zh. Vychisl. Mat. Mat. Fiz., 29:11 (1989), 1737–1740
-
An analogue of Kotel'nikov's theorem for nonuniform readings. Extrapolation and interpolation of the amplitude of the Fourier spectrum of finite signals
Dokl. Akad. Nauk SSSR, 300:2 (1988), 338–341
-
An abstract Carleman formula
Dokl. Akad. Nauk SSSR, 298:6 (1988), 1292–1296
-
Multiple extrapolation of holomorphic functions from matrices and functions that are holomorphic in the product of half-planes
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 6, 3–9
-
Extrapolation of functions that are holomorphic in a product of half-planes or strips. Analytic continuation of the spectrum
Sibirsk. Mat. Zh., 29:4 (1988), 3–11
-
Calculation experiment on the high-resolution of physical devices by the extrapolation of the Fourier spectrum of unidimensional finite signals
Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:19 (1987), 1193–1197
-
Extrapolation of functions holomorphic in the product of half-planes or bands. Analytic continuation of the spectrum
Dokl. Akad. Nauk SSSR, 290:2 (1986), 265–268
-
Application of a multidimensional logarithmic residue for obtaining analogues of the Voronoǐ–Hardy identity
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 5, 11–16
-
Higher-dimensional residues and their applications. Chapter 2
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 8 (1985), 29–45
-
Multidimensional analogue of the Carleman formula
Dokl. Akad. Nauk SSSR, 277:6 (1984), 1289–1291
-
A multidimensional analogue of Carleman's formula with a holomorphic kernel
Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 9, 3–6
-
Application of multidimensional logarithmic residue for representation in the form of the integral of the difference between the number of integer points in a domain and its volume
Dokl. Akad. Nauk SSSR, 270:3 (1983), 521–523
-
Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method
Fizika Goreniya i Vzryva, 19:1 (1983), 66–73
-
Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method. I. Algorithm
Fizika Goreniya i Vzryva, 19:1 (1983), 60–66
-
Multidimensional Hadamard composition and Szegö kernels
Sibirsk. Mat. Zh., 24:3 (1983), 3–10
-
Multidimensional analogues of Newton's formulas for systems of nonlinear algebraic equations and some of their applications
Sibirsk. Mat. Zh., 22:2 (1981), 19–30
-
On the solution of systems of nonlinear algebraic equations using the multidimensional logarithmic residue. On the solvability in radicals
Dokl. Akad. Nauk SSSR, 252:1 (1980), 11–14
-
Application of a multidimensional logarithmic residue to systems of nonlinear algebraic equations
Sibirsk. Mat. Zh., 20:4 (1979), 699–707
-
7.1. Linear functionals on spaces of analytic functions and linear convexity in $\mathbb C^n$
Zap. Nauchn. Sem. LOMI, 81 (1978), 29–32
-
On a formula for the generalized multidimensional logarithmic residue and the solution of systems of nonlinear equations
Dokl. Akad. Nauk SSSR, 234:3 (1977), 505–508
-
Integral representations with Szegö kernels for functions holomorphic in unbounded n-circular domains
Dokl. Akad. Nauk SSSR, 231:2 (1976), 265–268
-
Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary
Mat. Sb. (N.S.), 99(141):3 (1976), 342–355
-
On $\bar\partial$-closed external differential forms of the $(p,n-1)$ type in $C^n$ space
Dokl. Akad. Nauk SSSR, 209:5 (1973), 1009–1012
-
Polynomials orthogonal to holomorphic functions of several complex variables and an analogue to the Riesz theorem
Dokl. Akad. Nauk SSSR, 199:2 (1971), 255–257
-
A certain Borel summability method for multiple power series
Sibirsk. Mat. Zh., 12:6 (1971), 1398–1404
-
Integral representations of holomorphic functions of several complex variables
Tr. Mosk. Mat. Obs., 21 (1970), 3–26
-
Linear convexity in $C^n$
Sibirsk. Mat. Zh., 9:4 (1968), 731–746
-
The expansion of holomorphic functions of several complex variables in partial fractions
Sibirsk. Mat. Zh., 8:5 (1967), 1124–1142
-
A method for computing physical constants of polycrystalline materials
Dokl. Akad. Nauk SSSR, 167:5 (1966), 1028–1031
-
The general form of a continuous linear functional on the space of functions holomorphic in a convex region of $C^n$
Dokl. Akad. Nauk SSSR, 166:5 (1966), 1015–1018
-
Integral representations of holomorphic functions of several complex variables
Dokl. Akad. Nauk SSSR, 155:1 (1964), 9–12
-
Integral representations of functions holomorphic in $n$-circular domains (“Continuation” of Szegő kernels)
Mat. Sb. (N.S.), 65(107):1 (1964), 104–143
-
Integral representation of functions holomorphic in convex domains of the space $C^n$
Dokl. Akad. Nauk SSSR, 151:6 (1963), 1247–1249
-
Integral representations of functions holomorphic in polycircular regions
Dokl. Akad. Nauk SSSR, 138:1 (1961), 9–12
-
The spaces of functions analytic in $(p,q)$-circular regions
Dokl. Akad. Nauk SSSR, 136:3 (1961), 521–524
-
Spaces of functions analytic in multi-circular domains
Sibirsk. Mat. Zh., 1:2 (1960), 153–170
-
Temliakov integrals and the boundary properties of analytic functions of two complex variables
Dokl. Akad. Nauk SSSR, 120:5 (1958), 935–938
-
Boris Vasil'evich Fedosov (obituary)
Uspekhi Mat. Nauk, 67:1(403) (2012), 169–176
-
Correction to: “Carleman formulas with a holomorphic kernel and
with integration over boundary sets of maximal dimension” [Dokl. Akad. Nauk 325 (1992), no. 6, 1095–1098]
Dokl. Akad. Nauk, 330:4 (1993), 528
-
Lev Isaakovich Ronkin (on his sixtieth birthday)
Uspekhi Mat. Nauk, 46:5(281) (1991), 181–183
-
Boris Abramovich Fuks (on his sixtieth birthday)
Uspekhi Mat. Nauk, 23:2(140) (1968), 229–233
© , 2026