RUS  ENG
Full version
PEOPLE

Aizenberg Lev Abramovich

Publications in Math-Net.Ru

  1. An integral formula for the number of lattice points in a domain

    J. Sib. Fed. Univ. Math. Phys., 8:2 (2015),  134–139
  2. On the Bohr radius for two classes of holomorphic functions

    Sibirsk. Mat. Zh., 45:4 (2004),  734–746
  3. Some remarks on the Bohr radius for power series

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 10,  3–10
  4. Variations on the theme of the Morera theorem and the Pompeiu problem

    Dokl. Akad. Nauk, 337:6 (1994),  709–712
  5. On the property of uniqueness and existence of a limit in Carleman's formulas

    Trudy Mat. Inst. Steklov., 203 (1994),  3–12
  6. The moment condition in a problem with a free boundary for $CR$-functions

    Dokl. Akad. Nauk, 330:3 (1993),  277–279
  7. On the possibility of holomorphic extension, into a domain, of functions defined on a connected piece of its boundary. II

    Mat. Sb., 184:1 (1993),  3–14
  8. Carleman formulas with a holomorphic kernel and with integration over boundary sets of maximal dimension

    Dokl. Akad. Nauk, 325:6 (1992),  1095–1098
  9. Holomorphic continuation of functions from a part of the domain boundary

    Dokl. Akad. Nauk SSSR, 321:6 (1991),  1129–1132
  10. On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary

    Mat. Sb., 182:4 (1991),  490–507
  11. Conditionally stable linear problems and the Carleman formula

    Sibirsk. Mat. Zh., 31:6 (1990),  9–15
  12. Reconstruction of holomorphic and pluriharmonic functions in circular domains from values on the torus

    Sibirsk. Mat. Zh., 30:1 (1989),  175–177
  13. An estimate of the stability of interpolation of signals with a finite Fourier spectrum and a computational experiment

    Zh. Vychisl. Mat. Mat. Fiz., 29:11 (1989),  1737–1740
  14. An analogue of Kotel'nikov's theorem for nonuniform readings. Extrapolation and interpolation of the amplitude of the Fourier spectrum of finite signals

    Dokl. Akad. Nauk SSSR, 300:2 (1988),  338–341
  15. An abstract Carleman formula

    Dokl. Akad. Nauk SSSR, 298:6 (1988),  1292–1296
  16. Multiple extrapolation of holomorphic functions from matrices and functions that are holomorphic in the product of half-planes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 6,  3–9
  17. Extrapolation of functions that are holomorphic in a product of half-planes or strips. Analytic continuation of the spectrum

    Sibirsk. Mat. Zh., 29:4 (1988),  3–11
  18. Calculation experiment on the high-resolution of physical devices by the extrapolation of the Fourier spectrum of unidimensional finite signals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:19 (1987),  1193–1197
  19. Extrapolation of functions holomorphic in the product of half-planes or bands. Analytic continuation of the spectrum

    Dokl. Akad. Nauk SSSR, 290:2 (1986),  265–268
  20. Application of a multidimensional logarithmic residue for obtaining analogues of the Voronoǐ–Hardy identity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 5,  11–16
  21. Higher-dimensional residues and their applications. Chapter 2

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 8 (1985),  29–45
  22. Multidimensional analogue of the Carleman formula

    Dokl. Akad. Nauk SSSR, 277:6 (1984),  1289–1291
  23. A multidimensional analogue of Carleman's formula with a holomorphic kernel

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 9,  3–6
  24. Application of multidimensional logarithmic residue for representation in the form of the integral of the difference between the number of integer points in a domain and its volume

    Dokl. Akad. Nauk SSSR, 270:3 (1983),  521–523
  25. Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method

    Fizika Goreniya i Vzryva, 19:1 (1983),  66–73
  26. Determining all the steady solutions of the chemical-kinetics equations using the modified exclusion method. I. Algorithm

    Fizika Goreniya i Vzryva, 19:1 (1983),  60–66
  27. Multidimensional Hadamard composition and Szegö kernels

    Sibirsk. Mat. Zh., 24:3 (1983),  3–10
  28. Multidimensional analogues of Newton's formulas for systems of nonlinear algebraic equations and some of their applications

    Sibirsk. Mat. Zh., 22:2 (1981),  19–30
  29. On the solution of systems of nonlinear algebraic equations using the multidimensional logarithmic residue. On the solvability in radicals

    Dokl. Akad. Nauk SSSR, 252:1 (1980),  11–14
  30. Application of a multidimensional logarithmic residue to systems of nonlinear algebraic equations

    Sibirsk. Mat. Zh., 20:4 (1979),  699–707
  31. 7.1. Linear functionals on spaces of analytic functions and linear convexity in $\mathbb C^n$

    Zap. Nauchn. Sem. LOMI, 81 (1978),  29–32
  32. On a formula for the generalized multidimensional logarithmic residue and the solution of systems of nonlinear equations

    Dokl. Akad. Nauk SSSR, 234:3 (1977),  505–508
  33. Integral representations with Szegö kernels for functions holomorphic in unbounded n-circular domains

    Dokl. Akad. Nauk SSSR, 231:2 (1976),  265–268
  34. Holomorphic functions of several complex variables with nonnegative real part. Traces of holomorphic and pluriharmonic functions on the Shilov boundary

    Mat. Sb. (N.S.), 99(141):3 (1976),  342–355
  35. On $\bar\partial$-closed external differential forms of the $(p,n-1)$ type in $C^n$ space

    Dokl. Akad. Nauk SSSR, 209:5 (1973),  1009–1012
  36. Polynomials orthogonal to holomorphic functions of several complex variables and an analogue to the Riesz theorem

    Dokl. Akad. Nauk SSSR, 199:2 (1971),  255–257
  37. A certain Borel summability method for multiple power series

    Sibirsk. Mat. Zh., 12:6 (1971),  1398–1404
  38. Integral representations of holomorphic functions of several complex variables

    Tr. Mosk. Mat. Obs., 21 (1970),  3–26
  39. Linear convexity in $C^n$

    Sibirsk. Mat. Zh., 9:4 (1968),  731–746
  40. The expansion of holomorphic functions of several complex variables in partial fractions

    Sibirsk. Mat. Zh., 8:5 (1967),  1124–1142
  41. A method for computing physical constants of polycrystalline materials

    Dokl. Akad. Nauk SSSR, 167:5 (1966),  1028–1031
  42. The general form of a continuous linear functional on the space of functions holomorphic in a convex region of $C^n$

    Dokl. Akad. Nauk SSSR, 166:5 (1966),  1015–1018
  43. Integral representations of holomorphic functions of several complex variables

    Dokl. Akad. Nauk SSSR, 155:1 (1964),  9–12
  44. Integral representations of functions holomorphic in $n$-circular domains (“Continuation” of Szegő kernels)

    Mat. Sb. (N.S.), 65(107):1 (1964),  104–143
  45. Integral representation of functions holomorphic in convex domains of the space $C^n$

    Dokl. Akad. Nauk SSSR, 151:6 (1963),  1247–1249
  46. Integral representations of functions holomorphic in polycircular regions

    Dokl. Akad. Nauk SSSR, 138:1 (1961),  9–12
  47. The spaces of functions analytic in $(p,q)$-circular regions

    Dokl. Akad. Nauk SSSR, 136:3 (1961),  521–524
  48. Spaces of functions analytic in multi-circular domains

    Sibirsk. Mat. Zh., 1:2 (1960),  153–170
  49. Temliakov integrals and the boundary properties of analytic functions of two complex variables

    Dokl. Akad. Nauk SSSR, 120:5 (1958),  935–938

  50. Boris Vasil'evich Fedosov (obituary)

    Uspekhi Mat. Nauk, 67:1(403) (2012),  169–176
  51. Correction to: “Carleman formulas with a holomorphic kernel and with integration over boundary sets of maximal dimension” [Dokl. Akad. Nauk 325 (1992), no. 6, 1095–1098]

    Dokl. Akad. Nauk, 330:4 (1993),  528
  52. Lev Isaakovich Ronkin (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 46:5(281) (1991),  181–183
  53. Boris Abramovich Fuks (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 23:2(140) (1968),  229–233


© Steklov Math. Inst. of RAS, 2026