RUS  ENG
Full version
PEOPLE

Sukacheva Tamara Gennadievna

Publications in Math-Net.Ru

  1. Linearized Oskolkov system of non-zero order in the Avalos–Triggiani problem

    J. Comp. Eng. Math., 12:1 (2025),  36–43
  2. The linearized Oskolkov system in the Avalos–Triggiani problem

    J. Comp. Eng. Math., 11:1 (2024),  17–23
  3. Analysis of the Avalos–Triggiani problem for the linear Oskolkov system of the highest order and a system of wave equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:2 (2024),  104–110
  4. The linear Oskolkov system of non-zero order in the Avalos–Triggiani problem

    J. Comp. Eng. Math., 10:3 (2023),  17–23
  5. An analysis of the Avalos–Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:4 (2023),  93–98
  6. The Avalos – Triggiani problem for the linear oskolkov system and a system of wave equaions. II

    J. Comp. Eng. Math., 9:2 (2022),  67–72
  7. Analysis of the class of hydrodynamic systems

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:3 (2022),  45–51
  8. Oskolkov models and Sobolev-type equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  5–22
  9. The Avalos–Triggiani problem for the linear Oskolkov system and a system of wave equations

    Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022),  437–441
  10. A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of non-zero order in the magnetic field of the Earth

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:3 (2019),  42–51
  11. Phase space of the initial-boundary value problem for the Oskolkov system of highest order

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  67–77
  12. Computational experiment for a class of mathematical models of magnetohydrodynamics

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017),  149–155
  13. Homogeneous model of incompressible viscoelastic fluid of the non-zero order

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016),  22–30
  14. Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  823–829
  15. On a class of Sobolev-type equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:4 (2014),  5–21
  16. Issues of Patankar's numerical scheme stability

    Computer Research and Modeling, 4:4 (2012),  827–835
  17. The Generalized Linearized Model of Incompressible Viscoelastic Fluid of Nonzero Order

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11,  75–87
  18. The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 10,  40–53
  19. The generalized homogenous thermoconvection problem of the non-compressible viscoelastic fluid

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  62–69
  20. On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  33–41
  21. The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5,  83–93
  22. Nonstationarity linearizes model of dynamics of nonconpressible viscoelastic fluid

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  77–83
  23. A linearized model of the motion of a viscoelastic incompressible Kelvin–Voight fluid of nonzero order

    Sib. Zh. Ind. Mat., 6:4 (2003),  111–118
  24. Квазистационарные полутраектории одного класса полулинейных уравнений соболевского типа

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  71–85
  25. Spline approximations of the solution of a singular integro-differential equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 11,  46–53
  26. Solvability of a nonstationary thermal convection problem for a viscoelastic incompressible fluid

    Differ. Uravn., 36:8 (2000),  1106–1112
  27. On the solvability of a nonstationary problem of the dynamics of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero grade

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 3,  47–54
  28. On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid

    Mat. Zametki, 63:3 (1998),  442–450
  29. On a model of the motion of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order

    Differ. Uravn., 33:4 (1997),  552–557
  30. Relative $\sigma$-boundedness of linear operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 7,  68–73
  31. Заметки о линейных моделях вязкоупругих сред

    Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3,  135–147
  32. Necessary and sufficient conditions for the relative $\sigma$-boundedness of linear operators

    Dokl. Akad. Nauk, 345:1 (1995),  25–27
  33. Further results on the solvability of a singular system of ordinary differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4,  70–77
  34. Кокретные интерпретации абстрактной задачи Коши для одного класса операторных дифференциальных уравнений

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  151
  35. Медленные многообразия одного класса полулинейных уравнений типа Соболева

    Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1,  3–20
  36. Phase spaces of a class of operator semilinear equations of Sobolev type

    Differ. Uravn., 26:2 (1990),  250–258
  37. The Cauchy problem for a class of semilinear equations of Sobolev type

    Sibirsk. Mat. Zh., 31:5 (1990),  109–119
  38. Rapid-slow dynamics of viscoelastic media

    Dokl. Akad. Nauk SSSR, 308:4 (1989),  791–794
  39. Galerkin approximations of singular nonlinear equations of Sobolev type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10,  44–47

  40. Георгий Анатольевич Свиридюк (к юбилею)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127
  41. Yu.I. Sapronov. To the memory of mathematician, teacher and friend

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  166–168
  42. XIV School on Operator Theory in Functional Spaces

    Uspekhi Mat. Nauk, 45:2(272) (1990),  229–230


© Steklov Math. Inst. of RAS, 2026