|
|
Publications in Math-Net.Ru
-
Linearized Oskolkov system of non-zero order in the Avalos–Triggiani problem
J. Comp. Eng. Math., 12:1 (2025), 36–43
-
The linearized Oskolkov system in the Avalos–Triggiani problem
J. Comp. Eng. Math., 11:1 (2024), 17–23
-
Analysis of the Avalos–Triggiani problem for the linear Oskolkov system of the highest order and a system of wave equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:2 (2024), 104–110
-
The linear Oskolkov system of non-zero order in the Avalos–Triggiani problem
J. Comp. Eng. Math., 10:3 (2023), 17–23
-
An analysis of the Avalos–Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:4 (2023), 93–98
-
The Avalos – Triggiani problem for the linear oskolkov system and a system of wave equaions. II
J. Comp. Eng. Math., 9:2 (2022), 67–72
-
Analysis of the class of hydrodynamic systems
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:3 (2022), 45–51
-
Oskolkov models and Sobolev-type equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 5–22
-
The Avalos–Triggiani problem for the linear Oskolkov system and a system of wave equations
Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022), 437–441
-
A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of non-zero order in the magnetic field of the Earth
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:3 (2019), 42–51
-
Phase space of the initial-boundary value problem for the Oskolkov system of highest order
Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 67–77
-
Computational experiment for a class of mathematical models of magnetohydrodynamics
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017), 149–155
-
Homogeneous model of incompressible viscoelastic fluid of the non-zero order
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 22–30
-
Phase space of the initial-boundary value problem for the Oskolkov system of nonzero order
Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015), 823–829
-
On a class of Sobolev-type equations
Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:4 (2014), 5–21
-
Issues of Patankar's numerical scheme stability
Computer Research and Modeling, 4:4 (2012), 827–835
-
The Generalized Linearized Model of Incompressible Viscoelastic Fluid of Nonzero Order
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11, 75–87
-
The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 10, 40–53
-
The generalized homogenous thermoconvection problem of the non-compressible viscoelastic fluid
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8, 62–69
-
On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010), 33–41
-
The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2010, no. 5, 83–93
-
Nonstationarity linearizes model of dynamics of nonconpressible viscoelastic fluid
Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11, 77–83
-
A linearized model of the motion of a viscoelastic incompressible Kelvin–Voight fluid of nonzero order
Sib. Zh. Ind. Mat., 6:4 (2003), 111–118
-
Квазистационарные полутраектории одного класса
полулинейных уравнений соболевского типа
Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6, 71–85
-
Spline approximations of the solution of a singular integro-differential equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 11, 46–53
-
Solvability of a nonstationary thermal convection problem for a viscoelastic incompressible fluid
Differ. Uravn., 36:8 (2000), 1106–1112
-
On the solvability of a nonstationary problem of the dynamics of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero grade
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 3, 47–54
-
On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
Mat. Zametki, 63:3 (1998), 442–450
-
On a model of the motion of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order
Differ. Uravn., 33:4 (1997), 552–557
-
Relative $\sigma$-boundedness of linear operators
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 7, 68–73
-
Заметки о линейных моделях вязкоупругих сред
Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3, 135–147
-
Necessary and sufficient conditions for the relative
$\sigma$-boundedness of linear operators
Dokl. Akad. Nauk, 345:1 (1995), 25–27
-
Further results on the solvability of a singular system of ordinary differential equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4, 70–77
-
Кокретные интерпретации абстрактной задачи Коши для одного класса операторных дифференциальных уравнений
Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1, 151
-
Медленные многообразия одного класса
полулинейных уравнений типа Соболева
Vestnik Chelyabinsk. Gos. Univ., 1991, no. 1, 3–20
-
Phase spaces of a class of operator semilinear equations of Sobolev type
Differ. Uravn., 26:2 (1990), 250–258
-
The Cauchy problem for a class of semilinear equations of Sobolev type
Sibirsk. Mat. Zh., 31:5 (1990), 109–119
-
Rapid-slow dynamics of viscoelastic media
Dokl. Akad. Nauk SSSR, 308:4 (1989), 791–794
-
Galerkin approximations of singular nonlinear equations of Sobolev type
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10, 44–47
-
Георгий Анатольевич Свиридюк
(к юбилею)
Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 123–127
-
Yu.I. Sapronov. To the memory of mathematician, teacher and friend
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 166–168
-
XIV School on Operator Theory in Functional Spaces
Uspekhi Mat. Nauk, 45:2(272) (1990), 229–230
© , 2026