RUS  ENG
Full version
PEOPLE

Linke Yurij Ernievich

Publications in Math-Net.Ru

  1. On a geometric theory of the realization of nonlinear controlled dynamic processes in the class of second-order bilinear models

    Dal'nevost. Mat. Zh., 24:2 (2024),  200–219
  2. Rayleigh–Ritz operator in inverse problems for higher order multilinear nonautonomous evolution equations

    Mat. Tr., 26:2 (2023),  162–176
  3. Metric properties of the Rayleigh–Ritz operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9,  54–63
  4. On the differential realization of a second-order bilinear system in a Hilbert space

    Sib. Zh. Ind. Mat., 22:2 (2019),  27–36
  5. On the solvability of the problem of realization of the operator functions of a nonlinear regulator of a second-order dynamical system

    Sib. Zh. Ind. Mat., 18:4 (2015),  61–74
  6. Universal Spaces of Subdifferentials of Sublinear Operators Ranging in the Cone of Bounded Lower Semicontinuous Functions

    Mat. Zametki, 89:4 (2011),  547–557
  7. Universal spaces for the subdifferentials of sublinear operators with values in the spaces of continuous functions

    Sibirsk. Mat. Zh., 52:3 (2011),  635–649
  8. Extension conditions for bounded linear and sublinear operators with values in Lindenstrauss spaces

    Sibirsk. Mat. Zh., 51:6 (2010),  1340–1358
  9. On the Cone of Bounded Lower Semicontinuous Functions

    Mat. Zametki, 77:6 (2005),  886–902
  10. Separately continuous selectors

    Mat. Zametki, 63:2 (1998),  209–216
  11. The method of sublinear operators, and problems of selectors

    Dokl. Akad. Nauk, 347:4 (1996),  446–448
  12. Sublinear extension and averaging operators

    Dokl. Akad. Nauk, 341:3 (1995),  303–306
  13. Sublinear exaves

    Sibirsk. Mat. Zh., 36:1 (1995),  111–128
  14. Sublinear operators and Banach spaces with a weak $\mathscr{K}$-analytic topology

    Dokl. Akad. Nauk, 333:5 (1993),  582–584
  15. Application of Michael's theorem and its converse to sublinear operators

    Mat. Zametki, 52:1 (1992),  67–75
  16. Supplements to Michael's theorem on continuous selections, and their applications

    Mat. Sb., 183:11 (1992),  19–34
  17. Sublinear operators without subdifferentials

    Sibirsk. Mat. Zh., 32:3 (1991),  219–221
  18. The problem of the existence of a subdifferential for continuous and compact sublinear operators

    Dokl. Akad. Nauk SSSR, 315:4 (1990),  784–787
  19. An application of the Steiner point for investigating a class of sublinear operators

    Dokl. Akad. Nauk SSSR, 254:5 (1980),  1069–1072
  20. Sublinear operators defined on cones of finite dimensional spaces

    Sibirsk. Mat. Zh., 21:1 (1980),  139–152
  21. Properties of spaces of sublinear operators

    Sibirsk. Mat. Zh., 20:4 (1979),  792–806
  22. Representation of sublinear operators by multivalued mappings

    Dokl. Akad. Nauk SSSR, 234:2 (1977),  294–297
  23. Sublinear operators and Lindenstrauss spaces

    Dokl. Akad. Nauk SSSR, 234:1 (1977),  26–29
  24. Sublinear operators with values in spaces of continuous functions

    Dokl. Akad. Nauk SSSR, 228:3 (1976),  540–542
  25. On support sets of sublinear operators

    Dokl. Akad. Nauk SSSR, 207:3 (1972),  531–533

  26. Workshop “Contemporary Problems of the Theory of Functions”

    Uspekhi Mat. Nauk, 43:4(262) (1988),  250–251


© Steklov Math. Inst. of RAS, 2026