RUS  ENG
Full version
PEOPLE

Aleksandrov Alexander Yurevich

Publications in Math-Net.Ru

  1. Algorithms of mobile agent deployment on a segment under communication delay and network topology switching

    Izv. IMI UdGU, 66 (2025),  3–15
  2. Decentralized control algorithms for a group of mobile agents on a line under distributed communication delay

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 21:1 (2025),  139–150
  3. Stability analysis for some classes of nonlinear systems with distributed delay

    Sibirsk. Mat. Zh., 65:6 (2024),  1061–1075
  4. Triaxial electrodynamic stabilization of a satellite via PID controller

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:2 (2024),  244–254
  5. Stability analysis of mechanical systems with highly nonlinear positional forces under distributed delay

    Avtomat. i Telemekh., 2023, no. 1,  3–22
  6. Application of the implicit Euler method for the discretization of some classes of nonlinear systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023),  304–319
  7. Nonlinear control with distributed delay for angular stabilization of a rigid body

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:4 (2022),  653–664
  8. Convergence conditions for continuous and discrete models of population dynamics

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022),  443–453
  9. A problem of the equidistant deployment for discrete-time multiagent systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:1 (2022),  171–178
  10. Averaging technique in the problem of satellite attitude stabilization in indirect position in the orbital reference frame with the use of Lorentz torque

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8:1 (2021),  123–137
  11. Stability analysis of mechanical systems with distributed delay via decomposition

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:1 (2021),  13–26
  12. Discrete-time deployment of agents on a line segment: delays and switches do not matter

    Avtomat. i Telemekh., 2020, no. 4,  79–93
  13. Permanence conditions for models of population dynamics with switches and delay

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020),  88–99
  14. Investigation of ultimate boundedness conditions of mechanical systems via decomposition

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:2 (2019),  173–186
  15. On diagonal stability of positive systems with switches and delays

    Avtomat. i Telemekh., 2018, no. 12,  16–33
  16. Construction of the Lyapunov–Krasovskii functionals for some classes of positive delay systems

    Sibirsk. Mat. Zh., 59:5 (2018),  957–969
  17. On the diagonal stability of some classes of complex systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:2 (2018),  72–88
  18. Estimate of the attraction domain for a class of nonlinear switched systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 8,  3–16
  19. On stability of solutions for a class of nonlinear difference systems with switching

    Avtomat. i Telemekh., 2016, no. 5,  37–49
  20. Analysis of stability and stabilization of nonlinear systems via decomposition

    Sibirsk. Mat. Zh., 56:6 (2015),  1215–1233
  21. Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 1,  107–119
  22. On the asymptotic stability of solutions of hybrid multivariable systems

    Avtomat. i Telemekh., 2014, no. 5,  18–30
  23. On the ultimate boundedness and permanence of solutions for a class of discrete-time switched models of population dynamics

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 1,  5–16
  24. Uniaxial Electrodynamical Stabilization of the Artificial Earth Satellite in the Orbital Coordinate System

    Avtomat. i Telemekh., 2013, no. 8,  22–31
  25. On stability of gyroscopic systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 2,  3–13
  26. On the asymptotic stability of solutions of a class of systems of nonlinear differential equations with delay

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 5,  3–12
  27. On the asymptotic stability of solutions of nonlinear systems with delay

    Sibirsk. Mat. Zh., 53:3 (2012),  495–508
  28. On asymptotic stability of mechanical systems with nonstationary leading parameter under dissipative forces

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 2,  97–109
  29. Stability and stabilization of mechanical systems with switching

    Avtomat. i Telemekh., 2011, no. 6,  5–17
  30. On the preservation of instability of mechanical systems under the evolution of dissipative forces

    Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011),  3–19
  31. Stability Analysis Based on Nonlinear Inhomogeneous Approximation

    Mat. Zametki, 90:6 (2011),  803–820
  32. Investigation of solutions stability for a class of complex systems

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 4,  3–13
  33. On stability and stabilization of mechanical systems with nonlinear energy sinks

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 1,  106–115
  34. Об устойчивости решений гибридных однородных систем

    Matem. Mod. Kraev. Zadachi, 3 (2010),  10–13
  35. Preservation of stability under discretization of systems of ordinary differential equations

    Sibirsk. Mat. Zh., 51:3 (2010),  481–497
  36. On the Stability of Hybrid Homogeneous Systems

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  24–32
  37. On stability and dissipativity of some classes of complex systems

    Avtomat. i Telemekh., 2009, no. 8,  3–18
  38. On absolute stability of one class of nonlinear switched systems

    Avtomat. i Telemekh., 2008, no. 7,  3–18
  39. On stability of the solutions of a class of nonlinear delay systems

    Avtomat. i Telemekh., 2006, no. 9,  3–14
  40. On the Construction of Lyapunov Functions for Nonlinear Systems

    Differ. Uravn., 41:3 (2005),  291–297
  41. On the stability of solutions of nonlinear difference systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2,  3–12
  42. Об абсолютной устойчивости одной нелинейной системы дифференциальных уравнений

    Matem. Mod. Kraev. Zadachi, 3 (2004),  13–15
  43. On stability of solutions to one class of nonlinear difference systems

    Sibirsk. Mat. Zh., 44:6 (2003),  1217–1225
  44. Limiting States of Controllable Systems

    Avtomat. i Telemekh., 2002, no. 12,  24–31
  45. On the Stability of Complex Systems in Critical Situations

    Avtomat. i Telemekh., 2001, no. 9,  3–13
  46. The stability of a class of nonautonomous systems with respect to a nonlinear approximation

    Differ. Uravn., 36:7 (2000),  993–995
  47. Some convergence and stability conditions for nonlinear systems

    Differ. Uravn., 36:4 (2000),  549–551
  48. On stability with respect to the nonautonomous first approximation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 10,  13–20
  49. On the stability of the vector Li'enard equation with unsteady perturbations

    Sibirsk. Mat. Zh., 40:5 (1999),  977–986
  50. Investigation of recurrent oscillations of dynamical systems

    Differ. Uravn., 34:8 (1998),  1011–1017
  51. The effect of unbounded perturbations on the stability of systems of differential equations

    Differ. Uravn., 34:2 (1998),  279–281
  52. On a method for constructing Lyapunov functions for nonlinear nonautonomous systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 1,  3–10
  53. Stability of solutions of nonlinear systems with unbounded perturbations

    Mat. Zametki, 63:1 (1998),  3–8
  54. On stability with respect to a nonlinear approximation

    Sibirsk. Mat. Zh., 38:6 (1997),  1203–1210
  55. Asymptotic stability of solutions of systems of nonstationary differential equations with homogeneous right-hand sides

    Dokl. Akad. Nauk, 349:3 (1996),  295–296
  56. On the stability of the Liénard equation with unsteady perturbations

    Differ. Uravn., 32:5 (1996),  702–703
  57. On the existence of asymptotically recurrent motions of dynamical systems

    Differ. Uravn., 30:4 (1994),  720–722
  58. On the existence of recurrent solutions of a class of differential equations

    Differ. Uravn., 25:5 (1989),  902–903

  59. In memory of Vladimir Nikolaevich Shchennikov

    Zhurnal SVMO, 21:2 (2019),  269–273
  60. Stanislav Nikolaevich Vasiliev (the 70th of his birthday anniversary)

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 3,  128–129
  61. V. F. Demianov

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2,  154–156


© Steklov Math. Inst. of RAS, 2026