RUS  ENG
Full version
PEOPLE

Antonov Nikolai Viktorovich

Publications in Math-Net.Ru

  1. Field theoretic renormalization group in a model of random walk on a random surface

    Zap. Nauchn. Sem. POMI, 548 (2025),  16–26
  2. A general vector field coupled to a strongly compressible turbulent flow

    Zap. Nauchn. Sem. POMI, 509 (2021),  5–24
  3. Renormalization group analysis of models of advection of a vector admixture and a tracer field by a compressible turbulent flow

    TMF, 200:3 (2019),  429–451
  4. Renormalization group in the problem of active scalar advection

    Zap. Nauchn. Sem. POMI, 487 (2019),  5–27
  5. Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach

    TMF, 190:3 (2017),  377–390
  6. Critical behavior of the $O(n)$ $\phi^4$ model with an antisymmetric tensor order parameter: Three-loop approximation

    TMF, 190:2 (2017),  239–253
  7. Scaling in landscape erosion: Renormalization group analysis of a model with infinitely many couplings

    TMF, 190:2 (2017),  226–238
  8. Random interface growth in a random environment: Renormalization group analysis of a simple model

    TMF, 185:1 (2015),  37–56
  9. Anomalous scaling in statistical models of passively advected vector fields

    TMF, 176:1 (2013),  22–34
  10. Effects of turbulent transfer on critical behavior

    TMF, 169:1 (2011),  124–136
  11. The effect of strongly anisotropic turbulent mixing on critical behavior: Renormalization group analysis of two nonstandard systems

    TMF, 167:1 (2011),  50–77
  12. Renormalization group in the theory of turbulence: Three-loop approximation as $d\to\infty$

    TMF, 158:3 (2009),  460–477
  13. Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model

    TMF, 141:3 (2004),  455–468
  14. “Toy models” of turbulent convection and the hypothesis of the local isotropy restoration

    Zap. Nauchn. Sem. POMI, 269 (2000),  79–91
  15. Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion

    TMF, 120:2 (1999),  309–314
  16. Renormalization group in turbulence theory: Exactly solvable Heisenberg model

    TMF, 115:2 (1998),  245–262
  17. Renormalization group in the theory of the two-dimensional turbulence: Instability of the fixed point with respect to weak anisotropy

    TMF, 112:3 (1997),  417–427
  18. Renormalization group in the problem of the fully developed turbulence of a compresible fluid

    TMF, 110:3 (1997),  385–398
  19. Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators

    TMF, 110:1 (1997),  122–136
  20. Renormalization group in the theory of fully developed turbulence. Problem of the infrared relevant corrections to the Navier–Stokes equation

    TMF, 107:1 (1996),  47–63
  21. Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension eight

    TMF, 106:1 (1996),  92–101
  22. Quantum field renormalization group in the theory of fully developed turbulence

    UFN, 166:12 (1996),  1257–1284
  23. On the infra-red asymptotic behavior of the pair correlator of the energy dissipation rate for well-developed turbulence

    Zap. Nauchn. Sem. POMI, 224 (1995),  81–86
  24. The problem of justifying Kolmogorov's conjectures in the stochastic theory of turbulence

    Zap. Nauchn. Sem. POMI, 224 (1995),  43–54
  25. Composite operators, short–distance expansion and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to the Kolmogorov's scaling

    TMF, 100:3 (1994),  382–401
  26. Infrared asymptotics of the Feynman propagator in a simple non-Abellian model

    TMF, 96:2 (1993),  313–320
  27. Scaling function $\tau\to 0$ asymptotics of the correlation function in the $O_n-\varphi^4$ model

    TMF, 88:1 (1991),  149–152
  28. On the infrared asymptotics of the velocity-velocity correlator in the theory of the turbulence

    Zap. Nauchn. Sem. LOMI, 189 (1991),  15–23
  29. Critical properties of completely integrable spin models in quasicrystals

    TMF, 77:3 (1988),  402–411
  30. Propagator of Yang–Mills field in light cone gauge

    TMF, 75:3 (1988),  396–402
  31. Renormalizing approach to the theory of developed turbulence: Infrared asymptotic of scaling functions

    Zap. Nauchn. Sem. LOMI, 169 (1988),  18–28
  32. Quantization of Yang–Mills field in gauge with $A_0=0$

    TMF, 72:3 (1987),  384–393
  33. Scaling function for the velocity correlator in the theory of isotropic developed turbulence

    Zap. Nauchn. Sem. LOMI, 164 (1987),  3–9
  34. Critical properties and correlation functions of the eight-vertex model on a quasicrystal

    Zap. Nauchn. Sem. LOMI, 161 (1987),  13–23
  35. Cancellation of infrared divergences in quantum theory of solitons

    TMF, 64:3 (1985),  339–346
  36. Critical dynamics as a field theory

    TMF, 60:1 (1984),  59–71


© Steklov Math. Inst. of RAS, 2026