|
|
Publications in Math-Net.Ru
-
Cosmological models with modified equations of state for dark energy
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, no. 3, 19–40
-
Cosmological models with scalar fields
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 1, 97–111
-
Cosmological models with integrable equations of state
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 2, 5–26
-
Recent estimations of astrophysical parameters and forecast of the model with modified Chaplygin gas
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2015, no. 2, 7–23
-
5-Dimensional cosmological model with anisotropic pressure
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2012, no. 3, 15–27
-
Describing of Regge trajectories for mesons based on string model with massive ends
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2011, no. 21, 27–38
-
Cosmological solutions in 5-dimensional gravitational model with the brane
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2011, no. 20, 77–88
-
String world surfaces in spaces with compact factor-manifolds
Fundam. Prikl. Mat., 16:1 (2010), 171–177
-
Reality of frequencies of small disturbances for a string with a fixed end
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2009, no. 14, 29–35
-
Asymptotics of the dependence of the angular momentum on the energy for a string with massive ends
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 9, 15–21
-
Stability of the central states of a closed string with massive points
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 8, 37–50
-
Classification of rotational states of a closed string with massive points
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2007, no. 7, 131–138
-
Schwarzschild-Type Solutions in Dilaton Gravity
TMF, 145:1 (2005), 133–143
-
Closed relativistic strings in geometrically nontrivial spaces
TMF, 142:1 (2005), 72–82
-
Perturbed States of a Rotating Relativistic String
TMF, 140:2 (2004), 256–268
-
Multidimensional cosmological solutions of the Friedman type in dilaton gravity
TMF, 123:1 (2000), 163–176
-
Âynamics of string baryon model with linear disposition of quarks
Mat. Model., 11:7 (1999), 39–54
-
Classification of rotational motions for the baryon model “triangle”
TMF, 114:2 (1998), 277–295
-
String barionic model “triangle”
TMF, 113:1 (1997), 68–84
-
Solution of the initial boundary value problem for the relativistic string with massive ends
Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997), 605–616
-
Classification of motions of a relativistic string with massive ends with linearizable boundary conditions
TMF, 109:2 (1996), 187–201
-
Analogs of Fourier series for a relativistic string model with massive ends
TMF, 107:1 (1996), 86–99
-
Determination of the world surface of a relativistic string from the trajectory of a massive end
TMF, 102:1 (1995), 150–159
-
Multidimensional cosmological solutions of Friedmann type
TMF, 101:3 (1994), 458–466
-
Initial-boundary problem for the relativistic string with massive ends
TMF, 101:2 (1994), 253–271
© , 2026