RUS  ENG
Full version
PEOPLE

Sharov German Sergeevich

Publications in Math-Net.Ru

  1. Cosmological models with modified equations of state for dark energy

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, no. 3,  19–40
  2. Cosmological models with scalar fields

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 1,  97–111
  3. Cosmological models with integrable equations of state

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 2,  5–26
  4. Recent estimations of astrophysical parameters and forecast of the model with modified Chaplygin gas

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2015, no. 2,  7–23
  5. 5-Dimensional cosmological model with anisotropic pressure

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2012, no. 3,  15–27
  6. Describing of Regge trajectories for mesons based on string model with massive ends

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2011, no. 21,  27–38
  7. Cosmological solutions in 5-dimensional gravitational model with the brane

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2011, no. 20,  77–88
  8. String world surfaces in spaces with compact factor-manifolds

    Fundam. Prikl. Mat., 16:1 (2010),  171–177
  9. Reality of frequencies of small disturbances for a string with a fixed end

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2009, no. 14,  29–35
  10. Asymptotics of the dependence of the angular momentum on the energy for a string with massive ends

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 9,  15–21
  11. Stability of the central states of a closed string with massive points

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 8,  37–50
  12. Classification of rotational states of a closed string with massive points

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2007, no. 7,  131–138
  13. Schwarzschild-Type Solutions in Dilaton Gravity

    TMF, 145:1 (2005),  133–143
  14. Closed relativistic strings in geometrically nontrivial spaces

    TMF, 142:1 (2005),  72–82
  15. Perturbed States of a Rotating Relativistic String

    TMF, 140:2 (2004),  256–268
  16. Multidimensional cosmological solutions of the Friedman type in dilaton gravity

    TMF, 123:1 (2000),  163–176
  17. Âynamics of string baryon model with linear disposition of quarks

    Mat. Model., 11:7 (1999),  39–54
  18. Classification of rotational motions for the baryon model “triangle”

    TMF, 114:2 (1998),  277–295
  19. String barionic model “triangle”

    TMF, 113:1 (1997),  68–84
  20. Solution of the initial boundary value problem for the relativistic string with massive ends

    Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997),  605–616
  21. Classification of motions of a relativistic string with massive ends with linearizable boundary conditions

    TMF, 109:2 (1996),  187–201
  22. Analogs of Fourier series for a relativistic string model with massive ends

    TMF, 107:1 (1996),  86–99
  23. Determination of the world surface of a relativistic string from the trajectory of a massive end

    TMF, 102:1 (1995),  150–159
  24. Multidimensional cosmological solutions of Friedmann type

    TMF, 101:3 (1994),  458–466
  25. Initial-boundary problem for the relativistic string with massive ends

    TMF, 101:2 (1994),  253–271


© Steklov Math. Inst. of RAS, 2026