RUS  ENG
Full version
PEOPLE

Pokrovskii Andrei Vladimirovich

Publications in Math-Net.Ru

  1. On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure

    Funktsional. Anal. i Prilozhen., 52:1 (2018),  76–79
  2. Conditions for subharmonicity and subharmonic extensions of functions

    Mat. Sb., 208:8 (2017),  145–167
  3. Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations

    Funktsional. Anal. i Prilozhen., 42:2 (2008),  44–55
  4. On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions

    Mat. Zametki, 84:5 (2008),  755–762
  5. Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form

    Mat. Sb., 199:6 (2008),  137–160
  6. Removable singularities of solutions of non-linear elliptic equations

    Uspekhi Mat. Nauk, 62:3(375) (2007),  215–216
  7. The best asymmetric approximation in spaces of continuous functions

    Izv. RAN. Ser. Mat., 70:4 (2006),  175–208
  8. Function classes defined from local approximations by solutions to hypoelliptic equations

    Sibirsk. Mat. Zh., 47:2 (2006),  394–413
  9. Removable Singularities of $p$-Harmonic Functions

    Differ. Uravn., 41:7 (2005),  897–907
  10. Removable Singularities of Solutions of the Minimal Surface Equation

    Funktsional. Anal. i Prilozhen., 39:4 (2005),  62–68
  11. Removable singularities of weak solutions to linear partial differential equations

    Mat. Zametki, 77:4 (2005),  584–591
  12. Removable singularities of solutions of second-order divergence-form elliptic equations

    Mat. Zametki, 77:3 (2005),  424–433
  13. On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients

    Trudy Mat. Inst. Steklova, 236 (2002),  153–157
  14. Mean value theorems for solutions of linear partial differential equations

    Mat. Zametki, 64:2 (1998),  260–272
  15. Analytic continuation and superconvergence of series of homogeneous polynomials

    Mat. Zametki, 60:5 (1996),  708–714
  16. On the representation of continuous functions as the sum of quasi-analytic functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  20–23

  17. Evgenii Prokof'evich Dolzhenko (on his 80th birthday)

    Uspekhi Mat. Nauk, 69:6(420) (2014),  192–196


© Steklov Math. Inst. of RAS, 2026