RUS  ENG
Full version
PEOPLE

Myasnikov Aleksei Georgievich

Publications in Math-Net.Ru

  1. Varieties of exponential $R$-groups

    Algebra Logika, 62:2 (2023),  179–204
  2. Generic types and generic elements in divisible rigid groups

    Algebra Logika, 62:1 (2023),  102–113
  3. Erratum to: Several Articles in Doklady Mathematics

    Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022),  402–403
  4. Description of coordinate groups of irreducible algebraic sets over free 2-nilpotent groups

    Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022),  23–25
  5. The Diophantine problem in the classical matrix groups

    Izv. RAN. Ser. Mat., 85:6 (2021),  205–244
  6. Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures

    Fundam. Prikl. Mat., 22:4 (2019),  75–100
  7. Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits

    Algebra Logika, 57:6 (2018),  639–661
  8. Divisible rigid groups. II. Stability, saturation, and elementary submodels

    Algebra Logika, 57:1 (2018),  43–56
  9. Vitaliy Sushchansky (11.11.1946 – 29.10.2016)

    Algebra Discrete Math., 23:2 (2017),  C–F
  10. Algebraic geometry over algebraic structures. VI. Geometric equivalence

    Algebra Logika, 56:4 (2017),  421–442
  11. Model-theoretic aspects of the theory of divisible rigid soluble groups

    Algebra Logika, 56:1 (2017),  121–125
  12. Universal geometrical equivalence of the algebraic structures of common signature

    Sibirsk. Mat. Zh., 58:5 (2017),  1035–1050
  13. Quadratic equations in the Grigorchuk group

    Groups Geom. Dyn., 10:1 (2016),  201–239
  14. Generic theories as a method for approximating elementary theories

    Algebra Logika, 53:6 (2014),  779–789
  15. Algebraic geometry over algebraic structures. V. The case of arbitrary signature

    Algebra Logika, 51:1 (2012),  41–60
  16. Algebraic geometry over algebraic structures. II. Foundations

    Fundam. Prikl. Mat., 17:1 (2012),  65–106
  17. Amalgamated Free Product of Groups: Normal Forms and Measures

    Mat. Zametki, 91:4 (2012),  633–637
  18. Universal theories for rigid soluble groups

    Algebra Logika, 50:6 (2011),  802–821
  19. A polynomial bound on solutions of quadratic equations in free groups

    Trudy Mat. Inst. Steklova, 274 (2011),  148–190
  20. Algebraic geometry over algebraic structures. IV. Equational domains and codomains

    Algebra Logika, 49:6 (2010),  715–756
  21. Amalgamated products of groups: measures of random normal forms

    Fundam. Prikl. Mat., 16:8 (2010),  189–221
  22. Pregroups and the big powers condition

    Algebra Logika, 48:3 (2009),  342–377
  23. Groups elementarily equivalent to a free 2-nilpotent group of finite rank

    Algebra Logika, 48:2 (2009),  203–244
  24. Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem

    Mat. Zametki, 66:6 (1999),  879–886
  25. Amenable $L_1(G)$-modules that average functions and spaces with a mixed norm

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2,  54–59
  26. Groups with exponents I. Fundamentals of the theory and tensor completions

    Sibirsk. Mat. Zh., 35:5 (1994),  1106–1118
  27. Approaches to the theory of generalized computability

    Algebra Logika, 32:4 (1993),  349–386
  28. Amenable Banach $L_1(G)$-modules, invariant means and regularity in the sense of Arens

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 2,  72–80
  29. Admissible sets in group theory

    Algebra Logika, 31:4 (1992),  413–433
  30. Some properties of Banach $L_1(G)$-modules

    Funktsional. Anal. i Prilozhen., 24:4 (1990),  86–87
  31. Absolute continuity of norms in Banach ideal spaces with shifts

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 3,  78–80
  32. The theory of models of bilinear mappings

    Sibirsk. Mat. Zh., 31:3 (1990),  94–108
  33. Definable invariants of bilinear mappings

    Sibirsk. Mat. Zh., 31:1 (1990),  104–115
  34. The structure of models and a decidability criterion for complete theories of finite-dimensional algebras

    Izv. Akad. Nauk SSSR Ser. Mat., 53:2 (1989),  379–397
  35. Elementary theory of a module over a local ring

    Sibirsk. Mat. Zh., 30:3 (1989),  72–83
  36. Elementary theories and abstract isomorphisms of finite-dimensional algebras and unipotent groups

    Dokl. Akad. Nauk SSSR, 297:2 (1987),  290–293
  37. Recursive $p$-adic numbers and elementary theories of finitely generated pro-$p$-groups

    Izv. Akad. Nauk SSSR Ser. Mat., 51:3 (1987),  613–634
  38. Spaces $L_p$ with a mixed norm on locally compact groups

    Funktsional. Anal. i Prilozhen., 19:3 (1985),  73–74
  39. Extended Nielsen transformations and triviality of a group

    Mat. Zametki, 35:4 (1984),  491–495
  40. Definability of the set of Mal'tsev bases and elementary theories of finite-dimensional algebras. II

    Sibirsk. Mat. Zh., 24:2 (1983),  97–113
  41. Classification of power nilpotent groups by elementary properties

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 2 (1982),  56–87
  42. Definability of the set of Mal'tsev bases and elementary theories of finite-dimensional algebras. I

    Sibirsk. Mat. Zh., 23:5 (1982),  152–167
  43. On the approximability of groups of outer automorphisms of free groups of finite rank

    Algebra Logika, 20:3 (1981),  291–299
  44. Isomorphisms and elementary properties of nilpotent powered groups

    Dokl. Akad. Nauk SSSR, 258:5 (1981),  1056–1059
  45. On singular operators with a non-Carleman shift and their symbols

    Dokl. Akad. Nauk SSSR, 254:5 (1980),  1076–1080
  46. Singular integral operators with non-karleman shift on an open contour

    Funktsional. Anal. i Prilozhen., 14:1 (1980),  71–72
  47. Singular integral operators with non-Carleman shift

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 3,  22–31
  48. On singular integral operators with a non-Carleman shift and piecewise continuous coefficients

    Dokl. Akad. Nauk SSSR, 245:6 (1979),  1304–1307
  49. On singular integral operators with non-Carleman shift

    Dokl. Akad. Nauk SSSR, 237:6 (1977),  1289–1292

  50. Efim Isaakovich Zelmanov is 60 years old

    Uspekhi Mat. Nauk, 71:4(430) (2016),  193–199


© Steklov Math. Inst. of RAS, 2026