RUS  ENG
Full version
PEOPLE

Sukhinin Mikhail Fedorovich

Publications in Math-Net.Ru

  1. On the calculation of eigenvalues of a symmetric matrix

    Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  199–203
  2. Calculation of bounds for the spectrum of a symmetric matrix

    Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002),  1619–1623
  3. Two fixed-point theorems

    Mat. Zametki, 66:6 (1999),  920–923
  4. On the Bellman approach to optimal control theory

    Mat. Zametki, 66:5 (1999),  770–776
  5. A numerical method for solving quadratic programming problems with quadratic penalties applied by stages

    Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  932–937
  6. Solvability of nonlinear stationary transfer equation

    TMF, 103:1 (1995),  23–31
  7. Numerical solution of a nonlinear programming problem by means of a stepwise quadratic penalty method

    Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995),  1445–1448
  8. On the solvability of some nonlinear differential equations

    Differ. Uravn., 30:6 (1994),  1069–1077
  9. Step-by-step quadratic penalty solution of a quadratic programming problem

    Zh. Vychisl. Mat. Mat. Fiz., 34:8-9 (1994),  1298–1306
  10. On three principles of solvability of operator equations

    Mat. Sb., 184:1 (1993),  41–54
  11. Differentiability with respect to parameters in the presence of a priori estimates

    Mat. Zametki, 50:2 (1991),  125–130
  12. Lower semi-Taylor mappings and sufficient conditions for an extremum

    Mat. Sb., 182:6 (1991),  877–891
  13. On the solubility of equations in partially ordered sets and semimetric spaces

    Uspekhi Mat. Nauk, 44:5(269) (1989),  181–182
  14. On a theorem of differentiability of the solution of an ordinary differential equation with respect to the initial condition

    Differ. Uravn., 21:7 (1985),  1279–1281
  15. An analog of the Bellman equation

    Mat. Zametki, 38:2 (1985),  265–269
  16. On the existence of solutions of certain functional and integral equations

    Uspekhi Mat. Nauk, 40:2(242) (1985),  168
  17. Two variants of the gradient method

    Zh. Vychisl. Mat. Mat. Fiz., 24:8 (1984),  1265–1267
  18. Topological cones, operator equations, and the Newton–Kantorovich method

    Mat. Zametki, 33:1 (1983),  65–70
  19. The rule of Lagrange multipliers in locally convex spaces

    Sibirsk. Mat. Zh., 23:4 (1982),  153–165
  20. Inverse function theorem in locally convex spaces

    Mat. Zametki, 27:5 (1980),  741–749
  21. On the differentiability with respect to the initial condition of a solution to an ordinary differential equation

    Mat. Sb. (N.S.), 106(148):3(7) (1978),  440–454
  22. A weakened variant of the law of Lagrange multipliers in a Banach space

    Mat. Zametki, 21:2 (1977),  223–228
  23. An integrodifferential equation

    Uspekhi Mat. Nauk, 32:1(193) (1977),  175–176
  24. Two theorems on the conditional minimum of a functional in locally convex spaces

    Uspekhi Mat. Nauk, 30:3(183) (1975),  175–176
  25. A fixed point principle and its application in the theory of operators in topological linear spaces

    Uspekhi Mat. Nauk, 29:1(175) (1974),  189–190
  26. Conditional extrema of functionals in topological linear spaces

    Mat. Zametki, 14:3 (1973),  375–382
  27. Several theorems on inverse and implicit functions in linear topological spaces

    Uspekhi Mat. Nauk, 28:1(169) (1973),  251–252
  28. The local invertibility of a differentiable mapping

    Uspekhi Mat. Nauk, 25:5(155) (1970),  249–250


© Steklov Math. Inst. of RAS, 2026