RUS  ENG
Full version
PEOPLE

Muravei Leonid Andreevich

Publications in Math-Net.Ru

  1. Weight minimization for a thin straight wing with a divergence speed constraint

    Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019),  465–480
  2. The method of critical-component for solving ill-posed problems

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 10,  119–124
  3. Estimates of the rate of decay of solutions to the impedance mixed problem for the wave equation in a region with noncompact boundary

    Mat. Zametki, 66:3 (1999),  393–400
  4. On the non-local boundary-value problem for a parabolic equation

    Mat. Zametki, 54:4 (1993),  98–116
  5. A parabolic boundary value problem

    Dokl. Akad. Nauk SSSR, 317:1 (1991),  39–43
  6. On a problem with nonlocal boundary condition for a parabolic equation

    Mat. Sb., 182:10 (1991),  1479–1512
  7. The wave equation in an unbounded domain with a star-shaped boundary

    Dokl. Akad. Nauk SSSR, 303:2 (1988),  293–297
  8. The wave equation and the Helmholtz equation in an unbounded domain with a star-shaped boundary

    Trudy Mat. Inst. Steklov., 185 (1988),  171–180
  9. Asymptotic behavior of the solution of the wave equation in a resonator

    Dokl. Akad. Nauk SSSR, 289:1 (1986),  55–59
  10. Stabilization of solutions of a perturbed wave equation

    Dokl. Akad. Nauk SSSR, 284:1 (1985),  43–47
  11. Existence of solutions of variational problems in domains with free boundaries

    Dokl. Akad. Nauk SSSR, 278:3 (1984),  541–544
  12. Asymptotic behavior for large time values of the solutions of exterior boundary value problems for the wave equation in two space variables

    Mat. Zametki, 27:6 (1980),  959–980
  13. On the asymptotic behavior, for large values of the time, of solutions of exterior boundary value problems for the wave equation with two space variables

    Mat. Sb. (N.S.), 107(149):1(9) (1978),  84–133
  14. Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. III

    Mat. Sb. (N.S.), 105(147):1 (1978),  63–108
  15. Analytic continuations with respect to a parameter of the Green function of exterior boundary value problems for the two-dimensional Helmholtz equation. II

    Mat. Sb. (N.S.), 101(143):1(9) (1976),  87–130
  16. On the asymptotic behavior for large time values of the Green's function of the first exterior boundary-value problem for the wave equation with two space variables

    Dokl. Akad. Nauk SSSR, 220:6 (1975),  1271–1273
  17. On the asymptotic behavior for large values of time of a solution of an exterior boundary-value problem for the wave equation

    Dokl. Akad. Nauk SSSR, 220:2 (1975),  289–292
  18. On the analytic continuation of the Green functions of exterior boundary-value problems for the two-dimensional Helmholtz equation

    Dokl. Akad. Nauk SSSR, 220:1 (1975),  35–37
  19. The roots of the function $Ai'(z)-\sigma Ai(z)$

    Differ. Uravn., 11:6 (1975),  1054–1077
  20. Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. I

    Mat. Sb. (N.S.), 97(139):3(7) (1975),  403–434
  21. Asymptotic behavior, for large time values of the solutions of the second and the third exterior boundary value problem for the wave equation with two space variables

    Trudy Mat. Inst. Steklov., 126 (1973),  73–144
  22. Asymptotic behavior of solutions of the third exterior boundary-value problem for the wave equation with two space variables

    Dokl. Akad. Nauk SSSR, 205:4 (1972),  780–782
  23. Diminishing solution of the second external boundary value problem with two space variables

    Dokl. Akad. Nauk SSSR, 193:5 (1970),  996–999
  24. Asymptotic behavior of the solutions of the second exterior boundary value problem for the two-dimensional wave equation

    Differ. Uravn., 6:12 (1970),  2248–2262
  25. The Cauchy problem for the wave equations in $L_{p}$-spaces

    Trudy Mat. Inst. Steklov., 103 (1968),  172–180
  26. Riesz bases in $\mathfrak L_2(-1,1)$

    Trudy Mat. Inst. Steklov., 91 (1967),  113–131

  27. Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)

    Kvant, 2008, no. 2,  43–45
  28. Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)

    Kvant, 2007, no. 2,  43–44
  29. Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)

    Kvant, 2006, no. 2,  42–44
  30. Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)

    Kvant, 2005, no. 2,  44–46


© Steklov Math. Inst. of RAS, 2026