|
|
Publications in Math-Net.Ru
-
Weight minimization for a thin straight wing with a divergence speed constraint
Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019), 465–480
-
The method of critical-component for solving ill-posed problems
Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 10, 119–124
-
Estimates of the rate of decay of solutions to the impedance mixed problem for the wave equation in a region with noncompact boundary
Mat. Zametki, 66:3 (1999), 393–400
-
On the non-local boundary-value problem for a parabolic equation
Mat. Zametki, 54:4 (1993), 98–116
-
A parabolic boundary value problem
Dokl. Akad. Nauk SSSR, 317:1 (1991), 39–43
-
On a problem with nonlocal boundary condition for a parabolic equation
Mat. Sb., 182:10 (1991), 1479–1512
-
The wave equation in an unbounded domain with a star-shaped
boundary
Dokl. Akad. Nauk SSSR, 303:2 (1988), 293–297
-
The wave equation and the Helmholtz equation in an unbounded domain with a star-shaped boundary
Trudy Mat. Inst. Steklov., 185 (1988), 171–180
-
Asymptotic behavior of the solution of the wave equation in a resonator
Dokl. Akad. Nauk SSSR, 289:1 (1986), 55–59
-
Stabilization of solutions of a perturbed wave equation
Dokl. Akad. Nauk SSSR, 284:1 (1985), 43–47
-
Existence of solutions of variational problems in domains with free boundaries
Dokl. Akad. Nauk SSSR, 278:3 (1984), 541–544
-
Asymptotic behavior for large time values of the solutions of exterior boundary value problems for the wave equation in two space variables
Mat. Zametki, 27:6 (1980), 959–980
-
On the asymptotic behavior, for large values of the time, of solutions of exterior boundary value problems for the wave equation with two space variables
Mat. Sb. (N.S.), 107(149):1(9) (1978), 84–133
-
Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. III
Mat. Sb. (N.S.), 105(147):1 (1978), 63–108
-
Analytic continuations with respect to a parameter of the Green function of exterior boundary value problems for the two-dimensional Helmholtz equation. II
Mat. Sb. (N.S.), 101(143):1(9) (1976), 87–130
-
On the asymptotic behavior for large time values of the Green's function of the first exterior boundary-value problem for the wave equation with two space variables
Dokl. Akad. Nauk SSSR, 220:6 (1975), 1271–1273
-
On the asymptotic behavior for large values of time of a solution of an exterior boundary-value problem for the wave equation
Dokl. Akad. Nauk SSSR, 220:2 (1975), 289–292
-
On the analytic continuation of the Green functions of exterior boundary-value problems for the two-dimensional Helmholtz equation
Dokl. Akad. Nauk SSSR, 220:1 (1975), 35–37
-
The roots of the function $Ai'(z)-\sigma Ai(z)$
Differ. Uravn., 11:6 (1975), 1054–1077
-
Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. I
Mat. Sb. (N.S.), 97(139):3(7) (1975), 403–434
-
Asymptotic behavior, for large time values of the solutions of the second and the third exterior boundary value problem for the wave equation with two space variables
Trudy Mat. Inst. Steklov., 126 (1973), 73–144
-
Asymptotic behavior of solutions of the third exterior boundary-value problem for the wave equation with two space variables
Dokl. Akad. Nauk SSSR, 205:4 (1972), 780–782
-
Diminishing solution of the second external boundary value problem with two space variables
Dokl. Akad. Nauk SSSR, 193:5 (1970), 996–999
-
Asymptotic behavior of the solutions of the second exterior boundary value problem for the two-dimensional wave equation
Differ. Uravn., 6:12 (1970), 2248–2262
-
The Cauchy problem for the wave equations in $L_{p}$-spaces
Trudy Mat. Inst. Steklov., 103 (1968), 172–180
-
Riesz bases in $\mathfrak L_2(-1,1)$
Trudy Mat. Inst. Steklov., 91 (1967), 113–131
-
Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)
Kvant, 2008, no. 2, 43–45
-
Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)
Kvant, 2007, no. 2, 43–44
-
Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)
Kvant, 2006, no. 2, 42–44
-
Российский государственный технологический университет им. К.Э. Циолковского (МАТИ)
Kvant, 2005, no. 2, 44–46
© , 2026