RUS  ENG
Full version
PEOPLE

Kondakov Vladimir Petrovich

Publications in Math-Net.Ru

  1. On bases in spaces of continuous $n$-homogeneous polynomials in nuclear Köthe spaces

    Vladikavkaz. Mat. Zh., 14:2 (2012),  39–44
  2. On weak bases in functional spaces

    Vladikavkaz. Mat. Zh., 13:1 (2011),  21–30
  3. On the properties of complemented basic sequences in Köthe-type block spaces

    Vladikavkaz. Mat. Zh., 11:3 (2009),  15–27
  4. Simple perturbations of bases in Köthe spaces

    Vladikavkaz. Mat. Zh., 10:3 (2008),  11–22
  5. On classes of Köthe spaces in which every complemented subspace has a basis

    Vladikavkaz. Mat. Zh., 10:2 (2008),  21–29
  6. On the differentiability of mappings and the structure of spaces of holomorphic functions on infinite-dimensional spaces

    Vladikavkaz. Mat. Zh., 9:2 (2007),  9–21
  7. Bornologies and a natural extension of classes of regular elements in algebras of operators

    Vladikavkaz. Mat. Zh., 8:3 (2006),  29–39
  8. On the representation of spaces of holomorphic functions in the form of Köthe spaces

    Vladikavkaz. Mat. Zh., 7:4 (2005),  22–29
  9. Characterization of complemented subspaces in Cartesian products of structurally incomparable Köthe spaces in the Dragilev classes $(f)_0$ and $(f)_1$

    Vladikavkaz. Mat. Zh., 6:2 (2004),  17–20
  10. On complemented subspaces of some Köthe spaces of infinite type

    Sibirsk. Mat. Zh., 44:1 (2003),  112–119
  11. On two classes of Köthe-Fréchet spaces in which every complemented subspace has a basis

    Vladikavkaz. Mat. Zh., 5:4 (2003),  50–62
  12. Remarks on the existence of unconditional bases for weighted countably-Hilbert spaces and their complemented subspaces

    Sibirsk. Mat. Zh., 42:6 (2001),  1300–1313
  13. The Existence of Bases in Complemented Nuclear Subspaces of Infinite Type Power Series Spaces

    Funktsional. Anal. i Prilozhen., 34:2 (2000),  81–83
  14. Geometric properties of Fréchet spaces and selection of basis sequences

    Mat. Zametki, 66:1 (1999),  102–111
  15. On operators and complemented subspaces in the Köthe spaces determined by sparse matrices

    Sibirsk. Mat. Zh., 36:5 (1995),  1096–1112
  16. On Block Köthe Spaces in which the Range of Every Continuous Map has a Basis

    Funktsional. Anal. i Prilozhen., 27:4 (1993),  74–77
  17. Bases of complemented subspaces of functional spaces

    Funktsional. Anal. i Prilozhen., 24:3 (1990),  80–81
  18. Orthogonalization of bases in some classes of nuclear spaces

    Sibirsk. Mat. Zh., 31:4 (1990),  77–89
  19. Characterization of subspaces of certain sequence spaces

    Mat. Zametki, 39:1 (1986),  60–69
  20. Unconditional bases in certain Köthe spaces

    Sibirsk. Mat. Zh., 25:3 (1984),  109–119
  21. Properties of bases of some koethe spaces and their subspaces

    Funktsional. Anal. i Prilozhen., 14:1 (1980),  58–59
  22. On orderable absolute bases in $F$-spaces

    Dokl. Akad. Nauk SSSR, 247:3 (1979),  543–546
  23. Quasi-equivalence of absolute bases in spaces of classes $(d_1)$ and $(d_2)$

    Dokl. Akad. Nauk SSSR, 235:4 (1977),  729–732
  24. The absence of bases from certain separable linear topological spaces

    Mat. Zametki, 12:5 (1972),  583–589
  25. A class of nuclear spaces

    Mat. Zametki, 8:2 (1970),  169–179

  26. Melikhov Sergei Nikolaevich (on his fiftieth birthday)

    Vladikavkaz. Mat. Zh., 12:2 (2010),  79–80


© Steklov Math. Inst. of RAS, 2026