RUS  ENG
Full version
PEOPLE

Zabreiko Petr Petrovich

Publications in Math-Net.Ru

  1. On continuous solutions of the Cauchy problem for equations of fractional order

    Journal of the Belarusian State University. Mathematics and Informatics, 3 (2018),  39–45
  2. The convergence of successive approximations method for $p$-adic matrices

    Tr. Inst. Mat., 25:1 (2017),  27–38
  3. On derivatives of superposition operators between the spaces $L_p$

    Tr. Inst. Mat., 25:1 (2017),  15–26
  4. On the calculation of index of a vector field

    Tr. Inst. Mat., 24:2 (2016),  44–54
  5. Boolean-valued matrices in the open Leontiev model

    Tr. Inst. Mat., 24:1 (2016),  19–29
  6. Mathematical theory of geometric Koopmans model

    Tr. Inst. Mat., 23:2 (2015),  43–55
  7. Newton diagrams and algebraic curves. II

    Tr. Inst. Mat., 23:1 (2015),  64–75
  8. Newton diagrams and algebraic curves

    Tr. Inst. Mat., 22:2 (2014),  32–45
  9. Optimal Banach function space generated with the cone of nonnegative increasing functions

    Tr. Inst. Mat., 22:1 (2014),  24–34
  10. Optimal reconstruction of a Banach function space from a cone of nonnegative functions

    Trudy Mat. Inst. Steklova, 284 (2014),  142–156
  11. On the size of errors in the method of successive approximations

    Tr. Inst. Mat., 21:2 (2013),  91–102
  12. Principle of non-existence of nonlinear operator equation solutions

    Tr. Inst. Mat., 21:2 (2013),  81–90
  13. Multilinear and power functionals and operators in the space of continuous functions

    Tr. Inst. Mat., 20:2 (2012),  18–29
  14. Modular estimates in orlicz spaces and Hammerstein operator equations

    Tr. Inst. Mat., 20:1 (2012),  50–59
  15. Tangential vectors for sets defined with systems of equations

    Tr. Inst. Mat., 20:1 (2012),  42–49
  16. Matrix exponents and nilpotent algebras

    Tr. Inst. Mat., 19:2 (2011),  37–46
  17. Regular smoothness and the Newton–Kantorovich method

    Tr. Inst. Mat., 19:1 (2011),  52–61
  18. A principle for study of quasi-gradient methods of approximate solving operator equations in Hilbert spaces

    Tr. Inst. Mat., 19:1 (2011),  32–44
  19. The conditions of a local minimum of the functions in several variablesand implicit functions

    Tr. Inst. Mat., 18:2 (2010),  11–21
  20. Systems of scalar equations and implicit functions. II

    Tr. Inst. Mat., 18:1 (2010),  36–46
  21. Finite systems of equations and implicit functions. I

    Tr. Inst. Mat., 17:2 (2009),  3–14
  22. Gantmakher–Krein theorem for $2$-completely nonnegative operators in ideal spaces

    Tr. Inst. Mat., 17:1 (2009),  51–60
  23. The description of solutions of the open Leontiev–Ford model in ideal spaces

    Tr. Inst. Mat., 16:2 (2008),  37–48
  24. The open Leontiev–Ford model

    Tr. Inst. Mat., 15:2 (2007),  15–26
  25. On Hopf's theorems for relative rotation

    Tr. Inst. Mat., 15:1 (2007),  33–46
  26. The Cauchy problem for fractional differential equations with worsening right-hand sides

    Differ. Uravn., 42:8 (2006),  1132–1134
  27. The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems

    Differ. Uravn., 42:2 (2006),  233–238
  28. On the nonlocal solvability of the Cauchy problem for a matrix system of partial differential equations of Fedorov–Bernulli type

    Tr. Inst. Mat., 14:2 (2006),  48–53
  29. New existence theorems for Lyapunov–Schmidt integral equations

    Differ. Uravn., 40:9 (2004),  1198–1207
  30. On the Fixed Point Principle for Matrix Partial Differential Systems of Fedorov–Riccati Type

    Differ. Uravn., 40:6 (2004),  840–843
  31. An Analog of the Peano Theorem for Fractional-Order Quasilinear Equations in Compactly Embedded Scales of Banach Spaces

    Differ. Uravn., 40:4 (2004),  522–526
  32. On the Nonlocal Solvability of the Cauchy Problem for Quasilinear Normal First-Order Partial Differential Equations

    Differ. Uravn., 39:7 (2003),  1001–1003
  33. On Partial Integral Equations in the Space of Continuous Functions

    Differ. Uravn., 38:4 (2002),  538–546
  34. Fredholm formulas for linear integral equations

    Differ. Uravn., 35:9 (1999),  1162–1170
  35. The $L_2$-theory of linear Fredholm integral equations of the second kind

    Differ. Uravn., 31:9 (1995),  1498–1507
  36. New theorems on the solvability of Hammerstein equations with potential nonlinearities

    Differ. Uravn., 31:4 (1995),  690–695
  37. The Banach–Cacciopoli principle and the implicit function theorem in a binormed space and its applications to differential equations

    Differ. Uravn., 30:3 (1994),  381–392
  38. Exponential dichotomy and integral manifolds in the theory of flows and their applications

    Dokl. Akad. Nauk, 324:3 (1992),  515–518
  39. The group of characteristic operators and its applications in the theory of linear ordinary differential equations

    Dokl. Akad. Nauk, 324:1 (1992),  24–28
  40. Interpolation of the continuity property for partially additive operators

    Sibirsk. Mat. Zh., 33:2 (1992),  157–163
  41. Periodic solutions of a quasilinear telegraph equation

    Differ. Uravn., 27:5 (1991),  815–826
  42. New theorems on the solvability of Hammerstein operator and integral equations

    Differ. Uravn., 27:4 (1991),  672–682
  43. The Cauchy problem for higher-order differential equations with deteriorating operators

    Differ. Uravn., 27:3 (1991),  472–478
  44. Smoothness of solutions of linear differential equations in Banach spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 4,  9–16
  45. Smoothness properties of solutions of nonlinear differential equations

    Mat. Sb., 182:2 (1991),  147–163
  46. New theorems on the solvability of Hammerstein operator and integral equations

    Dokl. Akad. Nauk SSSR, 312:1 (1990),  28–31
  47. Duality theory of ideal spaces of vector functions

    Dokl. Akad. Nauk SSSR, 311:6 (1990),  1296–1299
  48. Continuous dependence of solutions of linear differential equations on a parameter

    Differ. Uravn., 24:12 (1988),  2056–2063
  49. A generalization of the Banach–Cacciopolli principle to operators in pseudometric spaces

    Differ. Uravn., 23:9 (1987),  1497–1504
  50. Applications of fixed-point theory to the Cauchy problem for equations with degrading operators

    Differ. Uravn., 23:2 (1987),  345–348
  51. On superposition operators in $l_p$ spaces

    Sibirsk. Mat. Zh., 28:1 (1987),  86–98
  52. Principles of uniform boundedness

    Mat. Zametki, 35:2 (1984),  287–297
  53. Determining equations and the relatedness principle

    Sibirsk. Mat. Zh., 24:1 (1983),  79–88
  54. On general conditions for a minimum

    Dokl. Akad. Nauk SSSR, 263:4 (1982),  798–801
  55. Theorem on extension of bounded solutions for differential equations and the averaging principle

    Sibirsk. Mat. Zh., 21:4 (1980),  50–61
  56. Über die Lösbarkeit des Cauchyproblems für gewöhnliche Differentialgleichungen in Banachräumen

    Differ. Uravn., 15:11 (1979),  2093–2094
  57. A theorem of M. G. Krein and M. A. Rutman

    Funktsional. Anal. i Prilozhen., 13:3 (1979),  81–82
  58. Reduction principle for the method of successive approximations and invariant manifolds

    Sibirsk. Mat. Zh., 20:3 (1979),  539–547
  59. On the closed graph theorem

    Sibirsk. Mat. Zh., 18:2 (1977),  304–313
  60. The superposition operator in Hölder function spaces

    Dokl. Akad. Nauk SSSR, 222:6 (1975),  1265–1268
  61. The method of a small parameter for hyperbolic equations

    Differ. Uravn., 8:5 (1972),  823–834
  62. Invariance of rotation principles

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 5,  51–57
  63. Quasilinear operators and Hammerstein's equation

    Mat. Zametki, 12:4 (1972),  453–464
  64. Iterations of operators, and fixed points

    Dokl. Akad. Nauk SSSR, 196:5 (1971),  1006–1009
  65. Eigenfunctions of the Hammerstein operator

    Differ. Uravn., 7:7 (1971),  1294–1304
  66. On a class of linear positive operators

    Funktsional. Anal. i Prilozhen., 5:4 (1971),  9–17
  67. Solvability of nonlinear operator equations

    Funktsional. Anal. i Prilozhen., 5:3 (1971),  42–44
  68. The bifurcation points of the Hammerstein equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 6,  43–53
  69. Periodic solutions of evolutionary equations

    Mat. Zametki, 9:6 (1971),  651–662
  70. The Schaefer method in the theory of Hammerstein integral equations

    Mat. Sb. (N.S.), 84(126):3 (1971),  456–475
  71. The Nekrasov–Nazarov method of solving nonlinear operator equations

    Sibirsk. Mat. Zh., 12:5 (1971),  1026–1040
  72. Bifurcation points of Hammerstein's equation

    Dokl. Akad. Nauk SSSR, 194:3 (1970),  496–499
  73. An oscillator on an elasto-plastic element

    Dokl. Akad. Nauk SSSR, 190:2 (1970),  266–268
  74. An operator-hysterant

    Dokl. Akad. Nauk SSSR, 190:1 (1970),  34–37
  75. A certain class of semigroups

    Dokl. Akad. Nauk SSSR, 189:5 (1969),  934–937
  76. The averaging principle and bifurcation of almost periodic solutions

    Dokl. Akad. Nauk SSSR, 187:6 (1969),  1219–1221
  77. Implicit functions and the averaging principle of N. N. Bogoljubov and N. M. Krylov

    Dokl. Akad. Nauk SSSR, 184:3 (1969),  526–529
  78. On the basis of the method of N. N. Bogoljubov and N. M. Krylov for ordinary differential equations

    Differ. Uravn., 5:2 (1969),  240–253
  79. A theorem for semiadditive functionals

    Funktsional. Anal. i Prilozhen., 3:1 (1969),  86–88
  80. The eigenvectors of Hammerstein's operator

    Dokl. Akad. Nauk SSSR, 183:4 (1968),  758–761
  81. A way of obtaining new fixed-point principles

    Dokl. Akad. Nauk SSSR, 176:6 (1967),  1233–1235
  82. Theorems on the existence and uniqueness of solutions of Hammerstein equations

    Dokl. Akad. Nauk SSSR, 176:4 (1967),  759–762
  83. Uniqueness theorems for ordinary differential equations

    Differ. Uravn., 3:2 (1967),  341–347
  84. On a fixed-point principle for operators in a Hilbert space

    Funktsional. Anal. i Prilozhen., 1:2 (1967),  93–94
  85. An interpolation theorem for linear operators

    Mat. Zametki, 2:6 (1967),  593–598
  86. Estimates of the spectral radius of postive linear operators

    Mat. Zametki, 1:4 (1967),  461–468
  87. Volterra integral operators

    Uspekhi Mat. Nauk, 22:1(133) (1967),  167–168
  88. Higher order approximations of the averaging method of N. N. Bogoljubov–N. M. Krylov

    Dokl. Akad. Nauk SSSR, 171:2 (1966),  262–265
  89. On differentiability of nonlinear operators in the spaces $\mathscr{L}_p$

    Dokl. Akad. Nauk SSSR, 166:5 (1966),  1039–1042
  90. On the theory of implicit functions in Banach spaces

    Uspekhi Mat. Nauk, 21:3(129) (1966),  235–237
  91. On fractional powers of elliptic operators

    Dokl. Akad. Nauk SSSR, 165:5 (1965),  990–993
  92. The continuity and complete continuity of operators of P. S. Uryson

    Dokl. Akad. Nauk SSSR, 161:5 (1965),  1007–1010
  93. A problem on fractional powers of operators

    Uspekhi Mat. Nauk, 20:6(126) (1965),  87–89
  94. Some properties of linear operators acting in the spaces $\mathscr{L}_p$

    Dokl. Akad. Nauk SSSR, 159:5 (1964),  975–977
  95. On $L$-characteristics of operators

    Uspekhi Mat. Nauk, 19:5(119) (1964),  187–189
  96. On continuity and complete continuity of nonlinear integral operators in $L_p$ spaces

    Uspekhi Mat. Nauk, 19:2(116) (1964),  204–205
  97. On the continuity of a non-linear integral operator

    Sibirsk. Mat. Zh., 5:4 (1964),  958–960
  98. Calculation of the index of a fixed point of a vector field

    Sibirsk. Mat. Zh., 5:3 (1964),  509–531
  99. On calculating the Poincaré index

    Dokl. Akad. Nauk SSSR, 145:5 (1962),  979–982
  100. Calculation of the index of an isolated stationary point of a completely continuous vector field

    Dokl. Akad. Nauk SSSR, 141:2 (1961),  292–295

  101. Memory of M. A. Krasnosel'skii

    Avtomat. i Telemekh., 1998, no. 2,  179–184
  102. Mark Alexandrovich Krasnosel'skii (on his seventieth birthday)

    Uspekhi Mat. Nauk, 45:2(272) (1990),  225–227
  103. Поправки к статье “О вычислении индекса изолированной неподвижной точки вполне непрерывного векторного поля” (ДАН, т. 141, № 2, 1961 г.)

    Dokl. Akad. Nauk SSSR, 146:1 (1962),  8


© Steklov Math. Inst. of RAS, 2026