RUS  ENG
Full version
PEOPLE

Terekhin A P

Publications in Math-Net.Ru

  1. Spherical analog of the complex form of trigonometric Fourier series; approximation

    Mat. Zametki, 67:5 (2000),  764–777
  2. An estimate for spherical approximations by local moduli of smoothness

    Dokl. Akad. Nauk, 339:6 (1994),  739–742
  3. Approximation in $L_p$ by spherical polynomials and differential classes of functions on sphere

    Trudy Mat. Inst. Steklov., 187 (1989),  216–226
  4. Uniform approximation by algebraic polynomials on the sphere of an odd-dimensional space

    Mat. Zametki, 41:3 (1987),  333–341
  5. Uniform approximation by algebraic polynomials of functions on the sphere of an odd-dimensional space

    Trudy Mat. Inst. Steklov., 180 (1987),  215
  6. Multiplicative estimates of moduli of mixed operator smoothness

    Trudy Mat. Inst. Steklov., 172 (1985),  325–337
  7. Mixed $q$-integral of the $p$-variation and mixed differentiability in $L_p$ of functions from $L_q$

    Mat. Zametki, 32:2 (1982),  151–167
  8. Estimation of mixed $p$-norm by $p$-norms of smaller multiplicity

    Sibirsk. Mat. Zh., 22:1 (1981),  158–172
  9. Equivalence theorems for classes of functions with mixed derivative

    Dokl. Akad. Nauk SSSR, 252:1 (1980),  52–55
  10. Estimate of a multiple integral by integrals of lesser multiplicity

    Mat. Zametki, 25:3 (1979),  379–392
  11. A mixed $q$-integral $p$-variation, and theorems of equivalence and imbedding of classes of functions with a mixed modulus of smoothness

    Trudy Mat. Inst. Steklov., 150 (1979),  306–319
  12. A multiparameter semigroup of operators, mixed moduli and aproximation

    Izv. Akad. Nauk SSSR Ser. Mat., 39:4 (1975),  937–960
  13. Semigroups of operators and mixed properties of Banach space elements

    Mat. Zametki, 16:1 (1974),  107–115
  14. Functions of bounded $p$-variation with given order of modulus of $p$-continuity

    Mat. Zametki, 12:5 (1972),  523–530
  15. Functions of bounded $q$-integral $p$-variation and imbedding theorems

    Mat. Sb. (N.S.), 88(130):2(6) (1972),  277–286
  16. Multidimensional $q$-integral $p$-variation, and generalized Sobolev differentiability in $L_p$ of functions from $L_q$

    Sibirsk. Mat. Zh., 13:6 (1972),  1358–1373
  17. The Lebesgue constant for the space of functions continuous in it and of bounded $p$-variation

    Mat. Zametki, 2:5 (1967),  505–512
  18. Integral smoothness properties of periodic functions of bounded $p$-variation

    Mat. Zametki, 2:3 (1967),  289–300
  19. The approximation of functions of bounded $p$-variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2,  171–187

  20. Representing a multiple difference as a series in its Steklov averages

    Sibirsk. Mat. Zh., 34:2 (1993),  224


© Steklov Math. Inst. of RAS, 2026