|
|
Publications in Math-Net.Ru
-
Spherical analog of the complex form of trigonometric Fourier series; approximation
Mat. Zametki, 67:5 (2000), 764–777
-
An estimate for spherical approximations by local moduli of
smoothness
Dokl. Akad. Nauk, 339:6 (1994), 739–742
-
Approximation in $L_p$ by spherical polynomials and differential classes of functions on sphere
Trudy Mat. Inst. Steklov., 187 (1989), 216–226
-
Uniform approximation by algebraic polynomials on the sphere of an odd-dimensional space
Mat. Zametki, 41:3 (1987), 333–341
-
Uniform approximation by algebraic polynomials of functions on the sphere of an odd-dimensional space
Trudy Mat. Inst. Steklov., 180 (1987), 215
-
Multiplicative estimates of moduli of mixed operator smoothness
Trudy Mat. Inst. Steklov., 172 (1985), 325–337
-
Mixed $q$-integral of the $p$-variation and mixed differentiability in $L_p$ of functions from $L_q$
Mat. Zametki, 32:2 (1982), 151–167
-
Estimation of mixed $p$-norm by $p$-norms of smaller multiplicity
Sibirsk. Mat. Zh., 22:1 (1981), 158–172
-
Equivalence theorems for classes of functions with mixed derivative
Dokl. Akad. Nauk SSSR, 252:1 (1980), 52–55
-
Estimate of a multiple integral by integrals of lesser multiplicity
Mat. Zametki, 25:3 (1979), 379–392
-
A mixed $q$-integral $p$-variation, and theorems of equivalence and imbedding of classes of functions with a mixed modulus of smoothness
Trudy Mat. Inst. Steklov., 150 (1979), 306–319
-
A multiparameter semigroup of operators, mixed moduli and aproximation
Izv. Akad. Nauk SSSR Ser. Mat., 39:4 (1975), 937–960
-
Semigroups of operators and mixed properties of Banach space elements
Mat. Zametki, 16:1 (1974), 107–115
-
Functions of bounded $p$-variation with given order of modulus of $p$-continuity
Mat. Zametki, 12:5 (1972), 523–530
-
Functions of bounded $q$-integral $p$-variation and imbedding theorems
Mat. Sb. (N.S.), 88(130):2(6) (1972), 277–286
-
Multidimensional $q$-integral $p$-variation, and generalized Sobolev differentiability in $L_p$ of functions from $L_q$
Sibirsk. Mat. Zh., 13:6 (1972), 1358–1373
-
The Lebesgue constant for the space of functions continuous in it and of bounded $p$-variation
Mat. Zametki, 2:5 (1967), 505–512
-
Integral smoothness properties of periodic functions of bounded $p$-variation
Mat. Zametki, 2:3 (1967), 289–300
-
The approximation of functions of bounded $p$-variation
Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2, 171–187
-
Representing a multiple difference as a series in its Steklov averages
Sibirsk. Mat. Zh., 34:2 (1993), 224
© , 2026