RUS  ENG
Full version
PEOPLE

Mirsaburov Mirakhmat

Publications in Math-Net.Ru

  1. Combined problem with local and non-local conditions and with general conjugation conditions for the Gellerstedt equation with a singular coefficient

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 12,  71–93
  2. A problem with an analogue of the Bitsadze–Samarskii condition on the segment of degeneracy and an internal segment parallel to it in the domain for a certain class of degenerate hyperbolic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 3,  25–29
  3. A problem in an unbounded domain with combined Tricomi and Frankl conditions on one boundary characteristic for one class of mixed type equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  39–52
  4. The problem in the unbounded domain with the Frankl condition on the segment of the degeneration line and with the missing Gellerstedt condition for a class of mixed-type equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 8,  35–44
  5. A problem with local and nonlocal conditions on the boundary of the ellipticity domain for a mixed type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12,  80–93
  6. The problem with missing condition of shift for singular coefficiensy Gellerstedt equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 5,  52–63
  7. A problem with an analog of Frankl condition on the characteristics for Gellerstedt equation with singular coefficient

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 11,  39–45
  8. Problem with shift on parallel characteristics for Gellerstedt equation with singular coefficient

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5,  61–70
  9. On a generalization of Bitsadze–Samarskii equation for mixed type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 10,  36–40
  10. On a problem with three variants of shift conditions for mixed type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 4,  32–45
  11. On a problem with shift for degenerate equation of mixed type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 4,  46–54
  12. A problem with Tricomi and Frankl conditions on the characteristic for a class of mixed-type equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 1,  41–50
  13. The second generalized Frankl' problem for the Chaplygin equation with a singular coefficient

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 3,  50–59
  14. A Problem with a Nonlocal Boundary Condition on the Characteristic for a Class of Equations of Mixed Type

    Mat. Zametki, 86:5 (2009),  748–760
  15. The Bitsadze–Samarskii Problem for a Class of Degenerate Hyperbolic Equations

    Differ. Uravn., 38:2 (2002),  271–276
  16. A Nonlocal Boundary Value Problem for a Degenerate Elliptic Equation

    Differ. Uravn., 38:1 (2002),  129–131
  17. Gellerstedt problem with data on the characteristics of one family and with nonlocal matching conditions

    News of the Kabardin-Balkar scientific center of RAS, 2002, no. 1,  48–53
  18. A Boundary Value Problem for a Class of Mixed Equations with the Bitsadze–Samarskii Condition on Parallel Characteristics

    Differ. Uravn., 37:9 (2001),  1281–1284
  19. A nonlocal boundary value problem for the Gellerstedt equation

    Mat. Zametki, 67:5 (2000),  721–729
  20. An analogue of the Bitsadze–Samarskii problem

    Sibirsk. Mat. Zh., 40:1 (1999),  177–182
  21. Problems of Bitsadze–Samarskiǐ type for a class of equations of mixed type

    Differ. Uravn., 31:5 (1995),  829–834
  22. Two nonlocal boundary value problems for a degenerate hyperbolic equation

    Differ. Uravn., 18:1 (1982),  116–127
  23. Some boundary value problems for a hyperbolic equation that degenerates inside the domain

    Differ. Uravn., 17:1 (1981),  129–136


© Steklov Math. Inst. of RAS, 2026