RUS  ENG
Full version
PEOPLE

Vasilevski Nikolai Leonidovich

Publications in Math-Net.Ru

  1. Trace Class Toeplitz Operators with Singular Symbols

    Trudy Mat. Inst. Steklova, 311 (2020),  241–249
  2. Dynamics of properties of Toeplitz operators on weighted Bergman spaces

    Sib. Èlektron. Mat. Izv., 3 (2006),  362–383
  3. Shift operator generated by trigonometric systems

    Mat. Zametki, 67:4 (2000),  539–548
  4. On the Bergman kernel function in quaternion analysis

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2,  84–88
  5. The classical Hurwitz problem and the associated theory of functions

    Dokl. Akad. Nauk, 349:5 (1996),  588–591
  6. Toeplitz operators with discontinuous presymbols in the Fock space

    Dokl. Akad. Nauk, 345:2 (1995),  153–155
  7. A $C^*$-algebra generated by almost-periodic two-dimensional singular operators with discontinuous symbols

    Funktsional. Anal. i Prilozhen., 21:3 (1987),  75–76
  8. On an algebra connected with Toeplitz operators in radial tube domains

    Izv. Akad. Nauk SSSR Ser. Mat., 51:1 (1987),  79–95
  9. An algebra generated by Toeplitz operators with zero-order pseudodifferential presymbols

    Dokl. Akad. Nauk SSSR, 289:1 (1986),  14–18
  10. Banach algebras generated by two-dimensional integral operators with a Bergman kernel and piecewise-continuous coefficients. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 3,  33–38
  11. Banach algebras generated by two-dimensional integral operators with a Bergman kernel and piecewise-continuous coefficients. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 2,  12–21
  12. Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type

    Mat. Sb. (N.S.), 129(171):1 (1986),  3–19
  13. Two-dimensional Mikhlin–Calderón–Zygmund operators and bisingular operators

    Sibirsk. Mat. Zh., 27:2 (1986),  23–31
  14. On certain algebras generated by a space analogue of the singular operator with Cauchy kernel

    Dokl. Akad. Nauk SSSR, 273:3 (1983),  521–524
  15. On the algebra generated by two-dimensional integral operators with Bergman kernel and piecewise continuous coefficients

    Dokl. Akad. Nauk SSSR, 271:5 (1983),  1041–1044
  16. On the theory of symbols for Banach algebras of operators that generalize algebras of singular integral operators

    Differ. Uravn., 17:4 (1981),  678–688
  17. On $\Phi_R$-operators in matrix algebras of operators

    Dokl. Akad. Nauk SSSR, 245:6 (1979),  1289–1292
  18. Investigation of a boundary value problem for a partial differential equation of mixed type by means of reduction to a singular integral equation with a Carleman shift

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 3,  15–19
  19. Symbols of operator algebras

    Dokl. Akad. Nauk SSSR, 235:1 (1977),  15–18
  20. A class of singular integral equations with involution, and its applications to the theory of boundary value problems for partial differential equations. II

    Differ. Uravn., 13:11 (1977),  2051–2062
  21. A class of singular integral equations with involution, and its applications in the theory of boundary value problems for partial differential equations. I

    Differ. Uravn., 13:9 (1977),  1692–1700
  22. On the structure of the symbol of operators forming finite-dimensional algebras

    Dokl. Akad. Nauk SSSR, 230:1 (1976),  11–14
  23. On a class of singular integral operators with kernels of polar-logarithmic type

    Izv. Akad. Nauk SSSR Ser. Mat., 40:1 (1976),  133–151
  24. Theory of solvability of a class of singular integral equations with involution

    Dokl. Akad. Nauk SSSR, 221:2 (1975),  269–271
  25. On the symbol of operators forming finite-dimensional algebras

    Dokl. Akad. Nauk SSSR, 221:1 (1975),  18–21
  26. On the Noetherian theory of integral operators with a polar logarithmic kernel

    Dokl. Akad. Nauk SSSR, 215:3 (1974),  514–517
  27. Noether theory of a certain class of integral operators of potential type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 7,  12–20
  28. On the properties of a class of integral operators in the space $L_p$

    Mat. Zametki, 16:4 (1974),  529–535
  29. On the Noether conditions and a formula for the index of a class of integral operators

    Dokl. Akad. Nauk SSSR, 202:4 (1972),  747–750

  30. Seminar on boundary-value problems and singular integral equations, Chair of Mathematical Analysis, Odessa State University

    Uspekhi Mat. Nauk, 30:1(181) (1975),  279–280


© Steklov Math. Inst. of RAS, 2026