RUS  ENG
Full version
PEOPLE

Repin Oleg Aleksandrovich

Publications in Math-Net.Ru

  1. Nonlocal problem with Saigo operators for mixed type equation of the third order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1,  63–68
  2. On a problem for mixed-type equation with fractional derivative

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8,  46–51
  3. Boundary-value problem with Saigo operatos for mixed type equation with fractional derivative

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1,  81–86
  4. Nonlocal problem for degenerating hyperbolic equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7,  50–56
  5. The problem with operators of fractional differentiation in boundary condition for mixed-type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  43–49
  6. On a problem with shift for mixed type equation with two degeneration lines

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1,  53–59
  7. The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017),  473–480
  8. On a boundary-value problem with Saigo operators for a mixed-type equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017),  271–277
  9. On the solvability of nonlocal problem for a hyperbolic equation of the second kind

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9,  51–58
  10. On a problem for mixed type equation with partial Riemann–Liouville fractional derivative

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:4 (2016),  636–643
  11. An internal boundary value problem with the Riemann–Liouville operator for the mixed type equation of the third order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016),  43–53
  12. Boundary-value problem with Saigo operators for mixed type equation of the third order with multiple characteristics

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7,  49–57
  13. Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 4,  60–64
  14. Boundary value problem for partial differential equation with fractional Riemann–Liouville derivative

    Ufimsk. Mat. Zh., 7:3 (2015),  70–75
  15. Nonlocal problem for partial differential equations of fractional order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015),  78–86
  16. Nonlocal problem with fractional derivatives for mixed type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  79–85
  17. On a class of nonlocal problems for hyperbolic equations with degeneration of type and order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  22–32
  18. Boundary Value Problem with Shift for One Partial Differential Equation Containing Partial Fractional Derivative

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  22–32
  19. A Boundary-value Problem with Shift for a Hyperbolic Equation Degenerate in the Interior of a Region

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014),  37–47
  20. A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8,  57–65
  21. On the problem with generalized operators of fractional differentiation for mixed type equation with two degeneracy lines

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  150–158
  22. A problem with generalized fractional integro-differentiation operator of an arbitrary order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 12,  59–71
  23. Problem with shift for the third-order equation with discontinuous coefficients

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012),  17–25
  24. On a problem with generalized operators of fractional differentiation for a degenerated inside a domain hyperbolic equation

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 9(100),  52–60
  25. A boundary-value problem with shifted for a mixed type equation with fractional derivative

    Izv. Saratov Univ. Math. Mech. Inform., 11:1 (2011),  89–94
  26. Nonlocal problem for a equation of mixed type of third order with generalized operators of fractional integro-differentiation of arbitrary order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011),  25–36
  27. Some new generalized integral transformations and their application in differential equations theory

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  8–16
  28. Nonlocal boundary value problem for a Lykov's type system of first-order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011),  140–150
  29. A nonlocal problem for the Bitsadze–Lykov equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  28–35
  30. О задаче с операторами дробного интегро-дифференцирования в краевом условии для вырождающегося гиперболического уравнения

    Matem. Mod. Kraev. Zadachi, 3 (2008),  143–149
  31. Аналог второй задачи Дарбу для одного вырождающегося гиперболического уравнения

    Matem. Mod. Kraev. Zadachi, 3 (2006),  46–51
  32. О задаче с операторами М. Сайго на характеристиках для вырождающегося внутри области гиперболического уравнения

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 43 (2006),  10–14
  33. A nonlocal problem for a mixed-type equation with a singular coefficient

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 34 (2005),  5–9
  34. A problem with nonlocal conditions on characteristics for the moisture transfer equation

    Differ. Uravn., 40:10 (2004),  1419–1422
  35. О разрешимости одной нелокальной задачи для параболо-гиперболического уравнения с дробной производной

    Matem. Mod. Kraev. Zadachi, 3 (2004),  183–188
  36. On a problem with generalized operators of fractional integro-differentiation for hyperbolic type equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 30 (2004),  70–72
  37. An Analog of the Bitsadze–Samarskii Problem for a Mixed Type Equation with a Fractional Derivative

    Differ. Uravn., 39:5 (2003),  638–644
  38. A boundary value problem for mixed-type equations in domains with multiply connected hyperbolicity subdomains

    Sibirsk. Mat. Zh., 44:1 (2003),  160–177
  39. An Analog of the Nakhushev Problem for the Bitsadze–Lykov Equation

    Differ. Uravn., 38:10 (2002),  1412–1417
  40. An analogue of the problem of A.M. Nakhushev for the Bitsadze-Lykov equation

    News of the Kabardin-Balkar scientific center of RAS, 2002, no. 1,  79–83
  41. A nonlocal boundary value problem for a parabolic-hyperbolic equation with a non-characteristic line of type changing

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002),  10–14
  42. Nonlocal Boundary Value Problems in a Vertical Half-Strip for a Generalized Axisymmetric Helmholtz Equation

    Differ. Uravn., 37:11 (2001),  1562–1564
  43. Нелокальная задача А. М. Нахушева для уравнения смешанного типа

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 12 (2001),  5–9
  44. Boundary value problems for a mixed-type equation in domains with a doubly connected hyperbolicity subdomain

    Differ. Uravn., 36:10 (2000),  1361–1364
  45. Essentially nonlocal boundary value problem for a certain partial differential equation

    Mat. Zametki, 67:3 (2000),  478–480
  46. Mixed problem for a loaded Gellerstedt equation with the M. Saigo operator in edge condition

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 9 (2000),  13–18
  47. On Frankl'-type problems for some elliptic equations with degeneration of various types

    Differ. Uravn., 35:8 (1999),  1087–1093
  48. On a problem with two nonlocal boundary conditions for an equation of mixed type

    Sibirsk. Mat. Zh., 40:6 (1999),  1260–1275
  49. A problem with a shift for a parabolic-hyperbolic equation

    Differ. Uravn., 34:6 (1998),  799–805
  50. On the solvability of a problem with a boundary condition on the characteristics for a degenerate hyperbolic equation

    Differ. Uravn., 34:1 (1998),  110–113
  51. О задаче Дирихле для обобщенного двуосесимметрического уравнения Гельмгольца в первом квадранте

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 6 (1998),  5–8
  52. The Tricomi problem for an equation of mixed type in a domain whose elliptic part is a half-strip

    Differ. Uravn., 32:4 (1996),  565–567
  53. On a nonlocal boundary value problem for the Euler–Poisson–Darboux equation

    Differ. Uravn., 31:1 (1995),  171–172
  54. On non-local boundary value problem with M. Saigo type operator for the generalized Euler–Poisson–Darboux equation

    Mat. Model., 7:5 (1995),  60
  55. A nonlocal boundary value problem for a degenerate hyperbolic equation

    Dokl. Akad. Nauk, 335:3 (1994),  295–296
  56. A nonlocal boundary value problem for a parabolic-hyperbolic equation with a characteristic line of change of type

    Differ. Uravn., 28:1 (1992),  173–176
  57. A boundary value problem for an equation of moisture transfer

    Differ. Uravn., 26:1 (1990),  169–171
  58. A problem in a strip for an equation of hyperbolic type with strong degeneracy

    Differ. Uravn., 22:8 (1986),  1442–1443
  59. A boundary value problem for the Euler–Darboux equations with positive parameters

    Differ. Uravn., 18:7 (1982),  1275–1277

  60. In Memory of Anatoliy A. Kilbas

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  6–9


© Steklov Math. Inst. of RAS, 2026