|
|
Publications in Math-Net.Ru
-
Nonlocal problem with Saigo operators for mixed type equation of the third order
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1, 63–68
-
On a problem for mixed-type equation with fractional derivative
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8, 46–51
-
Boundary-value problem with Saigo operatos for mixed type equation with fractional derivative
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 81–86
-
Nonlocal problem for degenerating hyperbolic equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7, 50–56
-
The problem with operators of fractional differentiation in boundary condition for mixed-type equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4, 43–49
-
On a problem with shift for mixed type equation with two degeneration lines
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1, 53–59
-
The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017), 473–480
-
On a boundary-value problem with Saigo operators for a mixed-type equation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 271–277
-
On the solvability of nonlocal problem for a hyperbolic equation of the second kind
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9, 51–58
-
On a problem for mixed type equation with partial Riemann–Liouville fractional derivative
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:4 (2016), 636–643
-
An internal boundary value problem with the Riemann–Liouville operator for the mixed type equation of the third order
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 43–53
-
Boundary-value problem with Saigo operators for mixed type equation of the third order with multiple characteristics
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7, 49–57
-
Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 4, 60–64
-
Boundary value problem for partial differential equation with fractional Riemann–Liouville derivative
Ufimsk. Mat. Zh., 7:3 (2015), 70–75
-
Nonlocal problem for partial differential equations of fractional order
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015), 78–86
-
Nonlocal problem with fractional derivatives for mixed type equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8, 79–85
-
On a class of nonlocal problems for hyperbolic equations with degeneration of type and order
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014), 22–32
-
Boundary Value Problem with Shift for One Partial Differential Equation Containing Partial Fractional Derivative
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014), 22–32
-
A Boundary-value Problem with Shift for a Hyperbolic Equation Degenerate in the Interior of a Region
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014), 37–47
-
A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8, 57–65
-
On the problem with generalized operators of fractional differentiation for mixed type equation with two degeneracy lines
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 150–158
-
A problem with generalized fractional integro-differentiation operator of an arbitrary order
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 12, 59–71
-
Problem with shift for the third-order equation with discontinuous coefficients
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012), 17–25
-
On a problem with generalized operators of fractional differentiation for a degenerated inside a domain hyperbolic equation
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 9(100), 52–60
-
A boundary-value problem with shifted for a mixed type equation with fractional derivative
Izv. Saratov Univ. Math. Mech. Inform., 11:1 (2011), 89–94
-
Nonlocal problem for a equation of mixed type of third order with generalized operators of fractional integro-differentiation of arbitrary order
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011), 25–36
-
Some new generalized integral transformations and their application in differential equations theory
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011), 8–16
-
Nonlocal boundary value problem for a Lykov's type system of first-order
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 140–150
-
A nonlocal problem for the Bitsadze–Lykov equation
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3, 28–35
-
О задаче с операторами дробного интегро-дифференцирования в краевом условии для вырождающегося гиперболического уравнения
Matem. Mod. Kraev. Zadachi, 3 (2008), 143–149
-
Аналог второй задачи Дарбу для одного вырождающегося гиперболического уравнения
Matem. Mod. Kraev. Zadachi, 3 (2006), 46–51
-
О задаче с операторами М. Сайго на характеристиках для вырождающегося внутри области гиперболического уравнения
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 43 (2006), 10–14
-
A nonlocal problem for a mixed-type equation with a singular coefficient
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 34 (2005), 5–9
-
A problem with nonlocal conditions on characteristics for the moisture transfer equation
Differ. Uravn., 40:10 (2004), 1419–1422
-
О разрешимости одной нелокальной задачи для параболо-гиперболического уравнения с дробной производной
Matem. Mod. Kraev. Zadachi, 3 (2004), 183–188
-
On a problem with generalized operators of fractional integro-differentiation for hyperbolic type equation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 30 (2004), 70–72
-
An Analog of the Bitsadze–Samarskii Problem for a Mixed Type Equation with a Fractional Derivative
Differ. Uravn., 39:5 (2003), 638–644
-
A boundary value problem for mixed-type equations in domains with multiply connected hyperbolicity subdomains
Sibirsk. Mat. Zh., 44:1 (2003), 160–177
-
An Analog of the Nakhushev Problem for the Bitsadze–Lykov Equation
Differ. Uravn., 38:10 (2002), 1412–1417
-
An analogue of the problem of A.M. Nakhushev for the Bitsadze-Lykov equation
News of the Kabardin-Balkar scientific center of RAS, 2002, no. 1, 79–83
-
A nonlocal boundary value problem for a parabolic-hyperbolic equation with a non-characteristic line of type changing
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002), 10–14
-
Nonlocal Boundary Value Problems in a Vertical Half-Strip for a Generalized Axisymmetric Helmholtz Equation
Differ. Uravn., 37:11 (2001), 1562–1564
-
Нелокальная задача А. М. Нахушева для уравнения смешанного типа
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 12 (2001), 5–9
-
Boundary value problems for a mixed-type equation in domains with a doubly connected hyperbolicity subdomain
Differ. Uravn., 36:10 (2000), 1361–1364
-
Essentially nonlocal boundary value problem for a certain partial differential equation
Mat. Zametki, 67:3 (2000), 478–480
-
Mixed problem for a loaded Gellerstedt equation with the M. Saigo operator in edge condition
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 9 (2000), 13–18
-
On Frankl'-type problems for some elliptic equations with degeneration of various types
Differ. Uravn., 35:8 (1999), 1087–1093
-
On a problem with two nonlocal boundary conditions for an equation of mixed type
Sibirsk. Mat. Zh., 40:6 (1999), 1260–1275
-
A problem with a shift for a parabolic-hyperbolic equation
Differ. Uravn., 34:6 (1998), 799–805
-
On the solvability of a problem with a boundary condition on the characteristics for a degenerate hyperbolic equation
Differ. Uravn., 34:1 (1998), 110–113
-
О задаче Дирихле для обобщенного двуосесимметрического уравнения Гельмгольца в первом квадранте
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 6 (1998), 5–8
-
The Tricomi problem for an equation of mixed type in a domain whose elliptic part is a half-strip
Differ. Uravn., 32:4 (1996), 565–567
-
On a nonlocal boundary value problem for the Euler–Poisson–Darboux equation
Differ. Uravn., 31:1 (1995), 171–172
-
On non-local boundary value problem with M. Saigo type operator for the generalized Euler–Poisson–Darboux equation
Mat. Model., 7:5 (1995), 60
-
A nonlocal boundary value problem for a degenerate hyperbolic
equation
Dokl. Akad. Nauk, 335:3 (1994), 295–296
-
A nonlocal boundary value problem for a parabolic-hyperbolic equation with a characteristic line of change of type
Differ. Uravn., 28:1 (1992), 173–176
-
A boundary value problem for an equation of moisture transfer
Differ. Uravn., 26:1 (1990), 169–171
-
A problem in a strip for an equation of hyperbolic type with strong degeneracy
Differ. Uravn., 22:8 (1986), 1442–1443
-
A boundary value problem for the Euler–Darboux equations with positive parameters
Differ. Uravn., 18:7 (1982), 1275–1277
-
In Memory of Anatoliy A. Kilbas
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010), 6–9
© , 2026