RUS  ENG
Full version
PEOPLE

Tikhomirov Sergey Aleksandrovich

Publications in Math-Net.Ru

  1. On the dimensions of components of stable rank $2$ vector bundles with odd determinant on $\mathbb{P}^{3}$

    J. Sib. Fed. Univ. Math. Phys., 19:1 (2026),  65–71
  2. Series of components of the moduli space of semistable reflexive rank 2 sheaves on ${\Bbb P}^3$

    Sibirsk. Mat. Zh., 66:1 (2025),  60–72
  3. Two series of components of the moduli space of semistable reflexive rank 2 sheaves on the projective space

    Sibirsk. Mat. Zh., 65:1 (2024),  115–124
  4. On the number of irreducible components of the moduli space of semistable reflexive rank 2 sheaves on the projective space

    Sibirsk. Mat. Zh., 64:1 (2023),  123–132
  5. On numerical characteristics of some bundles and their isomorphism classes on $\mathbb{P}^3$

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  415–425
  6. New moduli components of rank 2 bundles on projective space

    Mat. Sb., 212:11 (2021),  3–54
  7. On sections of generating series in lattice path problems

    Applied Mathematics & Physics, 52:2 (2020),  146–151
  8. Construction of stable rank $2$ bundles on $\mathbb{P}^3$ via symplectic bundles

    Sibirsk. Mat. Zh., 60:2 (2019),  441–460
  9. On the number of Vedernikov–Ein irreducible components of the moduli space of stable rank 2 bundles on the projective space

    Sibirsk. Mat. Zh., 59:1 (2018),  136–142
  10. Finding ein components in the moduli spaces of stable rank $2$ bundles on the projective $3$-space

    Sibirsk. Mat. Zh., 57:2 (2016),  410–419
  11. Families of stable bundles of rank 2 with $c_1=-1$ on the space $\mathbb P^3$

    Sibirsk. Mat. Zh., 55:6 (2014),  1396–1403
  12. Stable bundles of rank 2 with Chern's classes $c_1=0$, $c_2=2$ on $\mathbb P^3$ and Poncelet hyperquadrics

    J. Sib. Fed. Univ. Math. Phys., 4:4 (2011),  551–555
  13. On the Variety of Complete Punctual Flags of Length 5 in Dimension 2

    Trudy Mat. Inst. Steklova, 246 (2004),  277–282
  14. Punctual Hilbert schemes of small length in dimensions 2 and 3

    Mat. Zametki, 67:3 (2000),  414–432


© Steklov Math. Inst. of RAS, 2026