|
|
Publications in Math-Net.Ru
-
On the dimensions of components of stable rank $2$ vector bundles with odd determinant on $\mathbb{P}^{3}$
J. Sib. Fed. Univ. Math. Phys., 19:1 (2026), 65–71
-
Series of components of the moduli space of semistable reflexive rank 2 sheaves on ${\Bbb P}^3$
Sibirsk. Mat. Zh., 66:1 (2025), 60–72
-
Two series of components of the moduli space of semistable reflexive rank 2 sheaves on the projective space
Sibirsk. Mat. Zh., 65:1 (2024), 115–124
-
On the number of irreducible components of the moduli space of semistable reflexive rank 2 sheaves on the projective space
Sibirsk. Mat. Zh., 64:1 (2023), 123–132
-
On numerical characteristics of some bundles and their isomorphism classes on $\mathbb{P}^3$
Sib. Èlektron. Mat. Izv., 19:2 (2022), 415–425
-
New moduli components of rank 2 bundles on projective space
Mat. Sb., 212:11 (2021), 3–54
-
On sections of generating series in lattice path problems
Applied Mathematics & Physics, 52:2 (2020), 146–151
-
Construction of stable rank $2$ bundles on $\mathbb{P}^3$ via symplectic bundles
Sibirsk. Mat. Zh., 60:2 (2019), 441–460
-
On the number of Vedernikov–Ein irreducible components of the moduli space of stable rank 2 bundles on the projective space
Sibirsk. Mat. Zh., 59:1 (2018), 136–142
-
Finding ein components in the moduli spaces of stable rank $2$ bundles on the projective $3$-space
Sibirsk. Mat. Zh., 57:2 (2016), 410–419
-
Families of stable bundles of rank 2 with $c_1=-1$ on the space $\mathbb P^3$
Sibirsk. Mat. Zh., 55:6 (2014), 1396–1403
-
Stable bundles of rank 2 with Chern's classes $c_1=0$, $c_2=2$ on $\mathbb P^3$ and Poncelet hyperquadrics
J. Sib. Fed. Univ. Math. Phys., 4:4 (2011), 551–555
-
On the Variety of Complete Punctual Flags of Length 5 in Dimension 2
Trudy Mat. Inst. Steklova, 246 (2004), 277–282
-
Punctual Hilbert schemes of small length in dimensions 2 and 3
Mat. Zametki, 67:3 (2000), 414–432
© , 2026