RUS  ENG
Full version
PEOPLE

Shabozov Mirgand Shabozovich

Publications in Math-Net.Ru

  1. On the diameters of some classes of analytic functions in Bergman space

    Chebyshevskii Sb., 26:1 (2025),  116–130
  2. On the best polynomial approximation of analytical functions in the Bergman space $B_2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4,  90–103
  3. On Best Simultaneous Approximation of Analytic Functions in the Weighted Bergman Space

    Mat. Zametki, 118:4 (2025),  885–894
  4. On simultaneous approximation of certain classes of functions in the Bergman space $B_2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 6,  80–88
  5. On exact values of widths of classes of functions analytic in a disk

    Mat. Tr., 27:4 (2024),  115–140
  6. $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  301–308
  7. On mean–square approximation of functions in Bergman space $B_2$ and value of widths of some classes of functions

    Ufimsk. Mat. Zh., 16:2 (2024),  67–76
  8. On widths of some classes of analytic functions in a circle

    Ural Math. J., 10:2 (2024),  121–130
  9. Value of $n$-width of some classes of analytic functions in the Bergman space $B_{2}$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 3,  11–19
  10. On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$

    Chebyshevskii Sb., 24:1 (2023),  182–193
  11. On the Best Simultaneous Approximation in the Bergman Space $B_2$

    Mat. Zametki, 114:3 (2023),  435–446
  12. On the best simultaneous approximation of functions in the Hardy space

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  283–291
  13. Sharp Jackson–Stechkin type inequalities in Hardy space $H_2$ and widths of functional classes

    Ufimsk. Mat. Zh., 15:2 (2023),  74–84
  14. Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$

    Chebyshevskii Sb., 23:1 (2022),  167–182
  15. Jackson – Stechkin Inequality and Values of Widths of Some Classes of Functions in $L_2$

    Dal'nevost. Mat. Zh., 22:1 (2022),  125–137
  16. On the best polynomial approximation in Hardy space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 11,  110–123
  17. Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space

    Vladikavkaz. Mat. Zh., 24:1 (2022),  109–120
  18. Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 10,  78–91
  19. Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in $L_2$

    Mat. Zametki, 110:3 (2021),  450–458
  20. Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space

    Mat. Zametki, 110:2 (2021),  266–281
  21. On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  239–254
  22. Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves

    Chebyshevskii Sb., 21:3 (2020),  250–261
  23. Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6,  65–72
  24. On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 2,  74–92
  25. Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  268–278
  26. Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$

    Chebyshevskii Sb., 20:4 (2019),  385–398
  27. About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$

    Chebyshevskii Sb., 20:2 (2019),  348–365
  28. Best linear approximation methods for some classes of analytic functions on the unit disk

    Sibirsk. Mat. Zh., 60:6 (2019),  1414–1423
  29. Sharp inequalities of Jackson-Stechkin type for periodic functions in $L_2$ differentiable in the Weyl sense

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  255–264
  30. Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  258–272
  31. Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space $L_2$ and $n$-Widths

    Mat. Zametki, 103:4 (2018),  617–631
  32. On Kolmogorov type inequalities in the Bergman space for functions of two variables

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  270–282
  33. Mean-square approximation of complex variable functions by Fourier series in the weighted Bergman space

    Vladikavkaz. Mat. Zh., 20:1 (2018),  86–97
  34. On simultaneous approximation of functions of two variables and their derivatives by bilinear interpolation splines

    Sib. J. Pure and Appl. Math., 18:2 (2018),  60–72
  35. Sharp Estimates of the Error of Interpolation by Bilinear Splines for Some Classes of Functions

    Mat. Zametki, 102:3 (2017),  462–469
  36. Best approximation methods and widths for some classes of functions in $H_{q,\rho}$, $1\le q\le\infty$, $0<\rho\le1$

    Sibirsk. Mat. Zh., 57:2 (2016),  469–478
  37. The Jackson–Stechkin inequality with nonclassical modulus of continuity

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  311–319
  38. Jackson — Stechkin type inequalities with generalized moduli of continuity and widths of some classes of functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  292–308
  39. On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 7,  30–48
  40. On an Optimal Quadrature Formula for Classes of Functions Given by Modulus of Continuity

    Model. Anal. Inform. Sist., 21:3 (2014),  91–105
  41. On Best Quadrature Formulas for Evaluating Curvilinear Integrals for Some Classes of Functions and Curves

    Mat. Zametki, 96:4 (2014),  637–640
  42. Best Polynomial Approximations and the Widths of Function Classes in $L_{2}$

    Mat. Zametki, 94:6 (2013),  908–917
  43. On the exact values of mean $\nu$-widths of some classes of entire functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  315–327
  44. Best Polynomial Approximations in $L_2$ of Classes of $2\pi$-Periodic Functions and Exact Values of Their Widths

    Mat. Zametki, 90:5 (2011),  764–775
  45. Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$

    Sibirsk. Mat. Zh., 52:6 (2011),  1414–1427
  46. Widths of Classes of Periodic Differentiable Functions in the Space $L_{2}[0,2\pi]$

    Mat. Zametki, 87:4 (2010),  616–623
  47. The widths of classes of analytic functions in a disc

    Mat. Sb., 201:8 (2010),  3–22
  48. Widths of Some Classes of Analytic Functions in the Hardy Space $H_2$

    Mat. Zametki, 68:5 (2000),  796–800
  49. Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines

    Mat. Zametki, 59:1 (1996),  142–152


© Steklov Math. Inst. of RAS, 2026