RUS  ENG
Full version
PEOPLE

Chekhlov Andrey Rostislavovich

Publications in Math-Net.Ru

  1. A note on uniformly totally strongly inert subgroups of Abelian groups

    J. Sib. Fed. Univ. Math. Phys., 18:4 (2025),  467–473
  2. Abelian groups with solvable Lie endomorphism rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10,  90–97
  3. On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups

    Mat. Zametki, 114:5 (2023),  716–727
  4. Fully inert subgroups of completely decomposable groups, having homogeneous components of the final rank

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 12,  91–100
  5. Projectively Invariant Subgroups of Abelian $p$-Groups

    Mat. Zametki, 109:6 (2021),  921–928
  6. On projectively inert subgroups of completely decomposable finite rank groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 67,  63–68
  7. On weakly transitive torsion-free Abelian groups

    Fundam. Prikl. Mat., 22:5 (2019),  191–194
  8. On projectively fully transitive Abelian groups

    Fundam. Prikl. Mat., 22:5 (2019),  177–189
  9. On fully idempotent homomorphisms of abelian groups

    Sibirsk. Mat. Zh., 60:4 (2019),  932–940
  10. Abelian groups with monomorphisms invariant with respect to epimorphisms

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 12,  86–93
  11. Homomorphically Stable Abelian Groups

    Mat. Zametki, 103:4 (2018),  609–616
  12. Abelian groups with annihilator ideals of endomorphism rings

    Sibirsk. Mat. Zh., 59:2 (2018),  461–467
  13. On Strongly Invariant Subgroups of Abelian Groups

    Mat. Zametki, 102:1 (2017),  125–132
  14. On Fully Inert Subgroups of Completely Decomposable Groups

    Mat. Zametki, 101:2 (2017),  302–312
  15. Intermediately fully invariant subgroups of abelian groups

    Sibirsk. Mat. Zh., 58:5 (2017),  1170–1180
  16. On fully quasitransitive abelian groups

    Sibirsk. Mat. Zh., 57:5 (2016),  1184–1192
  17. Fully inert subgroups of completely decomposable finite rank groups and their commensurability

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41),  42–50
  18. On Abelian groups with commutative commutators of endomorphisms

    Fundam. Prikl. Mat., 20:5 (2015),  227–233
  19. On a Direct Sum of Irreducible Groups

    Mat. Zametki, 97:5 (2015),  798–800
  20. On abelian groups with right-invariant isometries

    Sibirsk. Mat. Zh., 55:3 (2014),  701–705
  21. Torsion-Free Weakly Transitive $E$-Engel Abelian Groups

    Mat. Zametki, 94:4 (2013),  620–627
  22. On abelian groups with commuting monomorphisms

    Sibirsk. Mat. Zh., 54:5 (2013),  1182–1187
  23. On abelian groups with central squares of commutators of endomorphisms

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 4(24),  54–59
  24. On direct sums of cyclic groups with invariant monomorphisms

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 3(23),  60–65
  25. On Abelian groups close to $E$-solvable groups

    Fundam. Prikl. Mat., 17:8 (2012),  183–219
  26. Abelian groups with nilpotent commutators of endomorphisms

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 10,  60–73
  27. On Some Classes of Nilgroups

    Mat. Zametki, 91:2 (2012),  297–304
  28. On projectively soluble abelian groups

    Sibirsk. Mat. Zh., 53:5 (2012),  1157–1165
  29. On the projective commutant of abelian groups

    Sibirsk. Mat. Zh., 53:2 (2012),  451–464
  30. E-engelian abelian groups of step $\le2$

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 1(17),  54–60
  31. On the Lie bracket of endomorphisms of Abelian groups, 2

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 1(13),  55–60
  32. $E$-solvable modules

    Fundam. Prikl. Mat., 16:7 (2010),  221–236
  33. Commutator invariant subgroups of abelian groups

    Sibirsk. Mat. Zh., 51:5 (2010),  1163–1174
  34. Some examples of E-solvable groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 3(11),  69–76
  35. E-nilpotent and E-solvable abelian groups of class 2

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 1(9),  59–71
  36. On $p$-rank 1 nil groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 1(9),  53–58
  37. Abelian groups with normal endomorphism rings

    Algebra Logika, 48:4 (2009),  520–539
  38. Separable and vector groups whose projectively invariant subgroups are fully invariant

    Sibirsk. Mat. Zh., 50:4 (2009),  942–953
  39. On abelian groups, in which all subgroups are ideals

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009, no. 3(7),  64–67
  40. On properties of centrally invariant and commutatorically invariant subgroups of abelian groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009, no. 2(6),  85–99
  41. On bracket Lie of endomorphisms of abelian groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009, no. 2(6),  78–84
  42. On projective invariant subgroups of abelian groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2009, no. 1(5),  31–36
  43. On projective invariant subgroups of Abelian groups

    Fundam. Prikl. Mat., 14:6 (2008),  211–218
  44. Properties of Projective Invariant Subgroups of Abelian Groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 1(2),  76–82
  45. On Weakly Quasipure Injective Groups

    Mat. Zametki, 81:3 (2007),  434–447
  46. On quasi-closed mixed groups

    Fundam. Prikl. Mat., 8:4 (2002),  1215–1224
  47. Totally Transitive Torsion-Free Groups of Finite $p$-Rank

    Algebra Logika, 40:6 (2001),  698–715
  48. On a Class of Endotransitive Groups

    Mat. Zametki, 69:6 (2001),  944–949
  49. On decomposable fully transitive torsion-free groups

    Sibirsk. Mat. Zh., 42:3 (2001),  714–719
  50. Torsion-free abelian groups with a large number of endomorphisms

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  194–207
  51. Quasipure injective torsion-free groups with indecomposable pure subgroups

    Mat. Zametki, 68:4 (2000),  587–592
  52. Direct products and direct sums of torsion-free abelian $QCPI$-groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 4,  58–67
  53. Abelian torsion-free $CS$-groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 3,  84–87
  54. Cohesive quasipure injective abelian groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10,  84–87
  55. Quasipure injective torsion-free Abelian groups

    Mat. Zametki, 46:3 (1989),  93–99
  56. Quasipure injective torsion-free abelian groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 6,  80–83
  57. Some classes of torsion-free abelian groups that are close to quasi-pure-injective groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 8,  82–83

  58. Askar Akanovich Tuganbaev (to the 70th anniversary of his birth)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 87,  175–179
  59. Pyotr Andreevich Krylov. To the 75th birthday

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 84,  167–173
  60. To the 110th anniversary of Sergei Antonovich Chunikhin

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 1(39),  115–124
  61. P. A. Krylov. To the 65$^{\mathrm{th}}$ anniversary

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 1(21),  116–122
  62. Grinshpon Samuil Yakovlevich (on the occasion of the 65th anniversary)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 4(20),  131–134
  63. The first head of the Department of Algebra in Tomsk State University

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 3(19),  107–112
  64. On F. E. Molin's archive

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3(15),  117–126


© Steklov Math. Inst. of RAS, 2026