RUS  ENG
Full version
PEOPLE

Fedoryuk Mikhail Vasil'evich

Publications in Math-Net.Ru

  1. Estimates of spheroidal functions

    Zh. Vychisl. Mat. Mat. Fiz., 32:5 (1992),  692–706
  2. Asymptotics of spheroidal functions in the complex domain

    Differ. Uravn., 27:5 (1991),  801–809
  3. Asymptotics of the spectrum of Heun's equation and of Heun's functions

    Izv. Akad. Nauk SSSR Ser. Mat., 55:3 (1991),  631–646
  4. Analytic structure of solutions of the Sturm–Liouville problem with regular singularities

    Differ. Uravn., 26:9 (1990),  1648–1650
  5. Analytic spectral problems

    Differ. Uravn., 26:2 (1990),  258–267
  6. Isomonodromy deformations of equations with irregular singularities

    Mat. Sb., 181:12 (1990),  1623–1639
  7. The multidimensional stationary phase method. The second term of the asymptotic expansions

    Zh. Vychisl. Mat. Mat. Fiz., 30:5 (1990),  782–786
  8. Asymptotic behavior of the spectrum and the solutions of the Lamé wave equation

    Dokl. Akad. Nauk SSSR, 308:5 (1989),  1053–1056
  9. Diffraction of waves by a tri-axial ellipsoid

    Differ. Uravn., 25:11 (1989),  1990–1995
  10. Connection formulas for spheroidal functions in different coordinate systems

    Differ. Uravn., 25:2 (1989),  294–299
  11. Multidimensional lame wave functions

    Mat. Zametki, 46:4 (1989),  76–85
  12. Logarithmic asymptotic of rapidly decreasing solutions of Petrovskii hyperbolic equations

    Mat. Zametki, 45:5 (1989),  50–62
  13. The Lamé wave equation

    Uspekhi Mat. Nauk, 44:1(265) (1989),  123–144
  14. The stationary phase method: Focusing in a line

    Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989),  127–132
  15. Lamé wave functions

    Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988),  853–874
  16. Equations with rapidly oscillating solutions

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 34 (1988),  5–56
  17. Characteristics of the flow of an incompressible fluid in a gravitational field

    Mat. Sb. (N.S.), 137(179):4(12) (1988),  483–499
  18. The asymptotic form of radial Lamé wave functions

    Zh. Vychisl. Mat. Mat. Fiz., 28:5 (1988),  635–646
  19. Diffraction of a plane wave by an elongated body

    Dokl. Akad. Nauk SSSR, 292:4 (1987),  833–835
  20. Lamé wave functions in Jacobi form. II

    Differ. Uravn., 23:11 (1987),  1913–1922
  21. Lamé wave functions in Jacobi form. I

    Differ. Uravn., 23:10 (1987),  1715–1724
  22. Isomonodromic deformations of equations with irregular singularity

    Differ. Uravn., 22:6 (1986),  961–967
  23. Integral transforms

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 13 (1986),  211–253
  24. Asymptotic methods in analysis

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 13 (1986),  93–210
  25. The WKB-method for a nonlinear equation of the second order

    Zh. Vychisl. Mat. Mat. Fiz., 26:2 (1986),  198–210
  26. Mixed short-long-wave approximation in the dynamics of viscoelastic media

    Dokl. Akad. Nauk SSSR, 280:6 (1985),  1334–1337
  27. The Neumann problem for the Helmholtz equation in the exterior of an infinite cylinder

    Differ. Uravn., 21:3 (1985),  534–535
  28. Scattering of a plane wave by a cylindrical surface with a long perturbation

    Izv. Akad. Nauk SSSR Ser. Mat., 49:1 (1985),  160–193
  29. Asymptotic behavior of the solution of the problem of scattering by a cylinder with large perturbation

    Tr. Mosk. Mat. Obs., 48 (1985),  150–162
  30. The linear theory of Landau damping

    Mat. Sb. (N.S.), 127(169):4(8) (1985),  445–475
  31. Asymptotics of the sum of a Schlömilch series

    Differ. Uravn., 20:12 (1984),  2153–2156
  32. Asymptotic of a wave potential that is concentrated on the line

    Mat. Zametki, 36:5 (1984),  673–679
  33. Asymptotics of solutions of ordinary differential equations with turning points

    Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984),  840–849
  34. Diffraction of a plane wave by an elongated body of revolution

    Dokl. Akad. Nauk SSSR, 272:3 (1983),  587–590
  35. The Sturm–Liouville problem with regular singular points. II

    Differ. Uravn., 19:2 (1983),  278–286
  36. A Sturm–Liouville problem with regular singularities

    Dokl. Akad. Nauk SSSR, 267:4 (1982),  800–803
  37. The Sturm-Liouville problem with regular singular points. I

    Differ. Uravn., 18:12 (1982),  2166–2173
  38. Asymptotics of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the exterior of a slender cylinder

    Izv. Akad. Nauk SSSR Ser. Mat., 45:1 (1981),  167–186
  39. Asymptotic behavior of the solution of a boundary value problem with sliding rays for second-order differential equations

    Tr. Mosk. Mat. Obs., 42 (1981),  64–104
  40. Logarithmic asymptotic of the Laplace integrals

    Mat. Zametki, 30:5 (1981),  763–768
  41. Rayleigh approximation in the elasticity theory

    Dokl. Akad. Nauk SSSR, 254:3 (1980),  589–592
  42. Wave propagation in periodic waveguides

    Dokl. Akad. Nauk SSSR, 242:3 (1978),  574–577
  43. Asymptotic behavior of the Green function of a pseudodifferential parabolic equation

    Differ. Uravn., 14:7 (1978),  1296–1301
  44. Asymptotic theory of systems of ordinary second order differential equations, and the scattering problem

    Tr. Mosk. Mat. Obs., 34 (1977),  213–242
  45. Of Fourier integral operators and the asymptotic behaviour of the solution of the mixed problem

    Uspekhi Mat. Nauk, 32:6(198) (1977),  67–115
  46. The asymptotics of the Fourier transform of the exponential function of a polynomial

    Dokl. Akad. Nauk SSSR, 227:3 (1976),  580–583
  47. An adiabatic invariant of a system of linear oscillators, and scattering theory

    Differ. Uravn., 12:6 (1976),  1012–1018
  48. The active quenching of the oscillations of elastic media

    Zh. Vychisl. Mat. Mat. Fiz., 16:4 (1976),  1065–1068
  49. Asymptotic behavior of the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a complex-valued polynomial potential. II

    Differ. Uravn., 10:6 (1974),  1067–1073
  50. Saddle points of parabolic polynomials

    Mat. Sb. (N.S.), 94(136):3(7) (1974),  385–406
  51. The canonical operator (the real case)

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 1 (1973),  85–167
  52. The behavior as $t\to+\infty$ of the solution of difference equations of Schrödinger type with dissipation

    Uspekhi Mat. Nauk, 28:4(172) (1973),  222
  53. Asymptotic behavior of the fundamental solution of a parabolic equation with constant coefficients

    Uspekhi Mat. Nauk, 28:1(169) (1973),  235–236
  54. Asymptotics of the fundamental solution of a Petrovskii parabolic equation with constant coefficients

    Mat. Sb. (N.S.), 91(133):4(8) (1973),  500–522
  55. A justification of the method of transverse sections for an acoustic wave guide with nonhomogeneous content

    Zh. Vychisl. Mat. Mat. Fiz., 13:1 (1973),  127–135
  56. Spectral analysis and the scattering problem for the operator $-d^2/dx^2+A(x)$. II

    Differ. Uravn., 8:7 (1972),  1187–1194
  57. Spectral analysis and the scattering problem for the operator $-d^2/dx^2+A(x)$. I

    Differ. Uravn., 8:6 (1972),  984–994
  58. Asymptotic behavior of the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a complex-valued polynomial potential. I

    Differ. Uravn., 8:5 (1972),  811–816
  59. The Helmholtz equation in a wave guide (the elimination of the boundary condition at infinity)

    Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972),  374–387
  60. Reduction of certain boundary-value problems for elliptic equations in a semicylinder to a mixed problem for the heat conduction and Schrödinger equations

    Dokl. Akad. Nauk SSSR, 200:3 (1971),  560–563
  61. Composition formulas for pseudodifferential operators and the stationary- phase method

    Dokl. Akad. Nauk SSSR, 196:2 (1971),  309–311
  62. The stationary phase method and pseudodifferential operators

    Uspekhi Mat. Nauk, 26:1(157) (1971),  67–112
  63. The method of stationary phase in the multidimensional case. Contribution from the boundary of the domain

    Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970),  286–299
  64. Analytic properties of the scattering amplitude in the one-dimensional case. II

    Differ. Uravn., 5:3 (1969),  507–517
  65. Asymptotic methods in the theory of ordinary differential equations

    Itogi Nauki. Ser. Matematika. Mat. Anal. 1967, 1969,  5–73
  66. Asymptotic methods in the theory of ordinary linear differential equations

    Mat. Sb. (N.S.), 79(121):4(8) (1969),  477–516
  67. Analytic properties of the scattering amplitude in the one-dimensional case. I

    Differ. Uravn., 4:10 (1968),  1842–1853
  68. On the stability in $C$ of the Cauchy problem for difference and partial differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967),  510–540
  69. Asymptotic behavior of eigenvalues and eigenfunctions of one-dimensional singular differential operators

    Dokl. Akad. Nauk SSSR, 169:2 (1966),  288–291
  70. The asymptotics of solutions to ordinary linear differential equations of the $n$-th order

    Differ. Uravn., 2:4 (1966),  492–507
  71. Asymptotic methods in the theory of one-dimensional singular differential operators

    Tr. Mosk. Mat. Obs., 15 (1966),  296–345
  72. Asymptotic behaviour as $\lambda\to\infty$ of the solution of the equation $w''(z)-p(z,\lambda)w(z)=0$ in the complex $z$-plane

    Uspekhi Mat. Nauk, 21:1(127) (1966),  3–50
  73. The asymptotic behavior of solutions of ordinary linear differential equations of order $n$

    Dokl. Akad. Nauk SSSR, 165:4 (1965),  777–779
  74. Asymptotic behavior in a one-dimensional scattering problem

    Dokl. Akad. Nauk SSSR, 162:2 (1965),  287–289
  75. The one-dimensional scattering problem in the quasi-classical approximation. II

    Differ. Uravn., 1:11 (1965),  1525–1536
  76. The one-dimensional scattering problem in the quasi-classical approximation. I

    Differ. Uravn., 1:5 (1965),  631–646
  77. Topology of the Stokes lines of a second-order equation

    Izv. Akad. Nauk SSSR Ser. Mat., 29:3 (1965),  645–656
  78. Spectrum of one-dimensional singular nonselfadjoint differential operators

    Uspekhi Mat. Nauk, 20:5(125) (1965),  265–266
  79. Asymptotics of the discrete spectrum of the operator $w''(x)-\lambda^2p(x)w(x)$

    Mat. Sb. (N.S.), 68(110):1 (1965),  81–110
  80. The asymptotic behavior of the discrete spectrum of the operator $-w''(x)+\lambda^2p(x)w(x)$

    Dokl. Akad. Nauk SSSR, 158:3 (1964),  540–542
  81. The stationary phase method. Close saddle points in the multi-dimensional case

    Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964),  671–682
  82. Asymptotic behaviour as $t\to+0$, $x\to\infty$, of the Green's function for equations well-posed in the Petrovsky sense with constant coefficients, and well-posed classes for a solution of the Cauchy problem

    Mat. Sb. (N.S.), 62(104):4 (1963),  397–468
  83. The stationary phase method for multidimensional integrals

    Zh. Vychisl. Mat. Mat. Fiz., 2:1 (1962),  145–150
  84. On the asymptotic behavior of contour integrals

    Uspekhi Mat. Nauk, 16:1(97) (1961),  171–178
  85. Asymptotic behavior of Green's functions for equations in several variables correct in the sense of Petrovskii

    Dokl. Akad. Nauk SSSR, 134:5 (1960),  1027–1029
  86. The asymptotic behavior of the Green’s function in the Cauchy problem for systems correct in the sense of Petrovskij and involving two variables, $t\to+0$, $x\to\infty$

    Dokl. Akad. Nauk SSSR, 132:1 (1960),  63–66
  87. Non-homogeneous generalized functions of two variables

    Mat. Sb. (N.S.), 49(91):4 (1959),  431–446

  88. Sessions of the Petrovskii seminar on differential equations and mathemathical problems of physics

    Uspekhi Mat. Nauk, 40:5(245) (1985),  295–307
  89. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 35:5(215) (1980),  251–256
  90. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 30:2(182) (1975),  261–269
  91. Third All-Unoin School on Diffraction and Wave Propagation

    Uspekhi Mat. Nauk, 27:5(167) (1972),  301–303
  92. Discrete and continuous methods in applied mathematics. Discretnye i nepretynye metody prikladnoi matematiki: J. C. Mathews and C. E. Langenhop. John Wiley, 1966, XIII+525 pp.

    Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968),  503
  93. Asymptotic expansions for ordinary differential equations: W. Wasow. New York–London–Sydney, John Wiley and Sons Inc., 1966, XI+362 pp.

    Zh. Vychisl. Mat. Mat. Fiz., 7:5 (1967),  1206–1207
  94. Boundary value problems: A. G. Mackie, Oliver and Boyd, Ltd., Edinburgh–London, 1965, XII + 249 pp. Book review

    Zh. Vychisl. Mat. Mat. Fiz., 5:6 (1965),  1143
  95. J. Mathews, R. L. Wolker. Mathematical methods of physics. New York–Amsterdam, W. A. Benjamin, Inc, 1964, X+475 pp. (Book review)

    Zh. Vychisl. Mat. Mat. Fiz., 5:4 (1965),  782–783


© Steklov Math. Inst. of RAS, 2026