|
|
Publications in Math-Net.Ru
-
Estimates of spheroidal functions
Zh. Vychisl. Mat. Mat. Fiz., 32:5 (1992), 692–706
-
Asymptotics of spheroidal functions in the complex domain
Differ. Uravn., 27:5 (1991), 801–809
-
Asymptotics of the spectrum of Heun's equation and of Heun's functions
Izv. Akad. Nauk SSSR Ser. Mat., 55:3 (1991), 631–646
-
Analytic structure of solutions of the Sturm–Liouville problem with regular singularities
Differ. Uravn., 26:9 (1990), 1648–1650
-
Analytic spectral problems
Differ. Uravn., 26:2 (1990), 258–267
-
Isomonodromy deformations of equations with irregular singularities
Mat. Sb., 181:12 (1990), 1623–1639
-
The multidimensional stationary phase method. The second term of the asymptotic expansions
Zh. Vychisl. Mat. Mat. Fiz., 30:5 (1990), 782–786
-
Asymptotic behavior of the spectrum and the solutions of the Lamé wave equation
Dokl. Akad. Nauk SSSR, 308:5 (1989), 1053–1056
-
Diffraction of waves by a tri-axial ellipsoid
Differ. Uravn., 25:11 (1989), 1990–1995
-
Connection formulas for spheroidal functions in different coordinate systems
Differ. Uravn., 25:2 (1989), 294–299
-
Multidimensional lame wave functions
Mat. Zametki, 46:4 (1989), 76–85
-
Logarithmic asymptotic of rapidly decreasing solutions of Petrovskii hyperbolic equations
Mat. Zametki, 45:5 (1989), 50–62
-
The Lamé wave equation
Uspekhi Mat. Nauk, 44:1(265) (1989), 123–144
-
The stationary phase method: Focusing in a line
Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989), 127–132
-
Lamé wave functions
Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988), 853–874
-
Equations with rapidly oscillating solutions
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 34 (1988), 5–56
-
Characteristics of the flow of an incompressible fluid in a gravitational field
Mat. Sb. (N.S.), 137(179):4(12) (1988), 483–499
-
The asymptotic form of radial Lamé wave functions
Zh. Vychisl. Mat. Mat. Fiz., 28:5 (1988), 635–646
-
Diffraction of a plane wave by an elongated body
Dokl. Akad. Nauk SSSR, 292:4 (1987), 833–835
-
Lamé wave functions in Jacobi form. II
Differ. Uravn., 23:11 (1987), 1913–1922
-
Lamé wave functions in Jacobi form. I
Differ. Uravn., 23:10 (1987), 1715–1724
-
Isomonodromic deformations of equations with irregular singularity
Differ. Uravn., 22:6 (1986), 961–967
-
Integral transforms
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 13 (1986), 211–253
-
Asymptotic methods in analysis
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 13 (1986), 93–210
-
The WKB-method for a nonlinear equation of the second order
Zh. Vychisl. Mat. Mat. Fiz., 26:2 (1986), 198–210
-
Mixed short-long-wave approximation in the dynamics of
viscoelastic media
Dokl. Akad. Nauk SSSR, 280:6 (1985), 1334–1337
-
The Neumann problem for the Helmholtz equation in the exterior of an infinite cylinder
Differ. Uravn., 21:3 (1985), 534–535
-
Scattering of a plane wave by a cylindrical surface with a long perturbation
Izv. Akad. Nauk SSSR Ser. Mat., 49:1 (1985), 160–193
-
Asymptotic behavior of the solution of the problem of scattering by a cylinder with large perturbation
Tr. Mosk. Mat. Obs., 48 (1985), 150–162
-
The linear theory of Landau damping
Mat. Sb. (N.S.), 127(169):4(8) (1985), 445–475
-
Asymptotics of the sum of a Schlömilch series
Differ. Uravn., 20:12 (1984), 2153–2156
-
Asymptotic of a wave potential that is concentrated on the line
Mat. Zametki, 36:5 (1984), 673–679
-
Asymptotics of solutions of ordinary differential equations with turning points
Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984), 840–849
-
Diffraction of a plane wave by an elongated body of revolution
Dokl. Akad. Nauk SSSR, 272:3 (1983), 587–590
-
The Sturm–Liouville problem with regular singular points. II
Differ. Uravn., 19:2 (1983), 278–286
-
A Sturm–Liouville problem with regular singularities
Dokl. Akad. Nauk SSSR, 267:4 (1982), 800–803
-
The Sturm-Liouville problem with regular singular points. I
Differ. Uravn., 18:12 (1982), 2166–2173
-
Asymptotics of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the exterior of a slender cylinder
Izv. Akad. Nauk SSSR Ser. Mat., 45:1 (1981), 167–186
-
Asymptotic behavior of the solution of a boundary value problem with sliding rays for second-order differential equations
Tr. Mosk. Mat. Obs., 42 (1981), 64–104
-
Logarithmic asymptotic of the Laplace integrals
Mat. Zametki, 30:5 (1981), 763–768
-
Rayleigh approximation in the elasticity theory
Dokl. Akad. Nauk SSSR, 254:3 (1980), 589–592
-
Wave propagation in periodic waveguides
Dokl. Akad. Nauk SSSR, 242:3 (1978), 574–577
-
Asymptotic behavior of the Green function of a pseudodifferential parabolic equation
Differ. Uravn., 14:7 (1978), 1296–1301
-
Asymptotic theory of systems of ordinary second order differential equations, and the scattering problem
Tr. Mosk. Mat. Obs., 34 (1977), 213–242
-
Of Fourier integral operators and the asymptotic behaviour of the solution of the mixed problem
Uspekhi Mat. Nauk, 32:6(198) (1977), 67–115
-
The asymptotics of the Fourier transform of the exponential function of a polynomial
Dokl. Akad. Nauk SSSR, 227:3 (1976), 580–583
-
An adiabatic invariant of a system of linear oscillators, and scattering theory
Differ. Uravn., 12:6 (1976), 1012–1018
-
The active quenching of the oscillations of elastic media
Zh. Vychisl. Mat. Mat. Fiz., 16:4 (1976), 1065–1068
-
Asymptotic behavior of the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a complex-valued polynomial potential. II
Differ. Uravn., 10:6 (1974), 1067–1073
-
Saddle points of parabolic polynomials
Mat. Sb. (N.S.), 94(136):3(7) (1974), 385–406
-
The canonical operator (the real case)
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 1 (1973), 85–167
-
The behavior as $t\to+\infty$ of the solution of difference equations of Schrödinger type with dissipation
Uspekhi Mat. Nauk, 28:4(172) (1973), 222
-
Asymptotic behavior of the fundamental solution of a parabolic equation with constant coefficients
Uspekhi Mat. Nauk, 28:1(169) (1973), 235–236
-
Asymptotics of the fundamental solution of a Petrovskii parabolic equation with constant coefficients
Mat. Sb. (N.S.), 91(133):4(8) (1973), 500–522
-
A justification of the method of transverse sections for an acoustic wave guide with nonhomogeneous content
Zh. Vychisl. Mat. Mat. Fiz., 13:1 (1973), 127–135
-
Spectral analysis and the scattering problem for the operator $-d^2/dx^2+A(x)$. II
Differ. Uravn., 8:7 (1972), 1187–1194
-
Spectral analysis and the scattering problem for the operator $-d^2/dx^2+A(x)$. I
Differ. Uravn., 8:6 (1972), 984–994
-
Asymptotic behavior of the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a complex-valued polynomial potential. I
Differ. Uravn., 8:5 (1972), 811–816
-
The Helmholtz equation in a wave guide (the elimination of the boundary condition at infinity)
Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972), 374–387
-
Reduction of certain boundary-value problems for elliptic equations in a semicylinder to a mixed problem for the heat conduction and Schrödinger equations
Dokl. Akad. Nauk SSSR, 200:3 (1971), 560–563
-
Composition formulas for pseudodifferential operators and the stationary- phase method
Dokl. Akad. Nauk SSSR, 196:2 (1971), 309–311
-
The stationary phase method and pseudodifferential operators
Uspekhi Mat. Nauk, 26:1(157) (1971), 67–112
-
The method of stationary phase in the multidimensional case. Contribution from the boundary of the domain
Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970), 286–299
-
Analytic properties of the scattering amplitude in the one-dimensional case. II
Differ. Uravn., 5:3 (1969), 507–517
-
Asymptotic methods in the theory of ordinary differential equations
Itogi Nauki. Ser. Matematika. Mat. Anal. 1967, 1969, 5–73
-
Asymptotic methods in the theory of ordinary linear differential equations
Mat. Sb. (N.S.), 79(121):4(8) (1969), 477–516
-
Analytic properties of the scattering amplitude in the one-dimensional case. I
Differ. Uravn., 4:10 (1968), 1842–1853
-
On the stability in $C$ of the Cauchy problem for difference and partial differential equations
Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967), 510–540
-
Asymptotic behavior of eigenvalues and eigenfunctions of one-dimensional singular differential operators
Dokl. Akad. Nauk SSSR, 169:2 (1966), 288–291
-
The asymptotics of solutions to ordinary linear differential equations of the $n$-th order
Differ. Uravn., 2:4 (1966), 492–507
-
Asymptotic methods in the theory of one-dimensional singular differential operators
Tr. Mosk. Mat. Obs., 15 (1966), 296–345
-
Asymptotic behaviour as $\lambda\to\infty$ of the solution of the equation $w''(z)-p(z,\lambda)w(z)=0$ in the complex $z$-plane
Uspekhi Mat. Nauk, 21:1(127) (1966), 3–50
-
The asymptotic behavior of solutions of ordinary linear differential equations of order $n$
Dokl. Akad. Nauk SSSR, 165:4 (1965), 777–779
-
Asymptotic behavior in a one-dimensional scattering problem
Dokl. Akad. Nauk SSSR, 162:2 (1965), 287–289
-
The one-dimensional scattering problem in the quasi-classical approximation. II
Differ. Uravn., 1:11 (1965), 1525–1536
-
The one-dimensional scattering problem in the quasi-classical approximation. I
Differ. Uravn., 1:5 (1965), 631–646
-
Topology of the Stokes lines of a second-order equation
Izv. Akad. Nauk SSSR Ser. Mat., 29:3 (1965), 645–656
-
Spectrum of one-dimensional singular nonselfadjoint differential operators
Uspekhi Mat. Nauk, 20:5(125) (1965), 265–266
-
Asymptotics of the discrete spectrum of the operator $w''(x)-\lambda^2p(x)w(x)$
Mat. Sb. (N.S.), 68(110):1 (1965), 81–110
-
The asymptotic behavior of the discrete spectrum of the operator $-w''(x)+\lambda^2p(x)w(x)$
Dokl. Akad. Nauk SSSR, 158:3 (1964), 540–542
-
The stationary phase method. Close saddle points in the multi-dimensional case
Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964), 671–682
-
Asymptotic behaviour as $t\to+0$, $x\to\infty$, of the Green's function for equations well-posed in the Petrovsky sense with constant coefficients, and well-posed classes for a solution of the Cauchy problem
Mat. Sb. (N.S.), 62(104):4 (1963), 397–468
-
The stationary phase method for multidimensional integrals
Zh. Vychisl. Mat. Mat. Fiz., 2:1 (1962), 145–150
-
On the asymptotic behavior of contour integrals
Uspekhi Mat. Nauk, 16:1(97) (1961), 171–178
-
Asymptotic behavior of Green's functions for equations in several variables correct in the sense of Petrovskii
Dokl. Akad. Nauk SSSR, 134:5 (1960), 1027–1029
-
The asymptotic behavior of the Green’s function in the Cauchy problem for systems correct in the sense
of Petrovskij and involving two variables, $t\to+0$, $x\to\infty$
Dokl. Akad. Nauk SSSR, 132:1 (1960), 63–66
-
Non-homogeneous generalized functions of two variables
Mat. Sb. (N.S.), 49(91):4 (1959), 431–446
-
Sessions of the Petrovskii seminar on differential equations and mathemathical problems of physics
Uspekhi Mat. Nauk, 40:5(245) (1985), 295–307
-
Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics
Uspekhi Mat. Nauk, 35:5(215) (1980), 251–256
-
Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics
Uspekhi Mat. Nauk, 30:2(182) (1975), 261–269
-
Third All-Unoin School on Diffraction and Wave Propagation
Uspekhi Mat. Nauk, 27:5(167) (1972), 301–303
-
Discrete and continuous methods in applied mathematics. Discretnye i nepretynye metody prikladnoi matematiki: J. C. Mathews and C. E. Langenhop. John Wiley, 1966, XIII+525 pp.
Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968), 503
-
Asymptotic expansions for ordinary differential equations: W. Wasow. New York–London–Sydney, John Wiley and Sons Inc., 1966, XI+362 pp.
Zh. Vychisl. Mat. Mat. Fiz., 7:5 (1967), 1206–1207
-
Boundary value problems: A. G. Mackie, Oliver and Boyd, Ltd., Edinburgh–London, 1965, XII + 249 pp. Book review
Zh. Vychisl. Mat. Mat. Fiz., 5:6 (1965), 1143
-
J. Mathews, R. L. Wolker. Mathematical methods of physics. New York–Amsterdam, W. A. Benjamin, Inc, 1964, X+475 pp. (Book review)
Zh. Vychisl. Mat. Mat. Fiz., 5:4 (1965), 782–783
© , 2026