RUS  ENG
Full version
PEOPLE

Zhelezovsky Sergei Evgen'evich

Publications in Math-Net.Ru

  1. Stability of an operator-difference scheme for thermoelasticity problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 6,  14–23
  2. The convergence rate of a projection-difference method for an abstract coupled problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9,  52–61
  3. Stability of a three-layer operator-difference scheme for coupled thermoelasticity problems

    Sib. Zh. Vychisl. Mat., 14:4 (2011),  345–360
  4. Error estimates in the projection-difference method for a hyperbolic-parabolic system of abstract differential equations

    Sib. Zh. Vychisl. Mat., 13:3 (2010),  269–284
  5. On the smoothness of the solution of an abstract coupled problem of thermoelasticity type

    Zh. Vychisl. Mat. Mat. Fiz., 50:7 (2010),  1240–1257
  6. Error estimate in the projection-difference method for an abstract quasilinear hyperbolic equation with a non-smooth right-hand side

    Sib. Zh. Vychisl. Mat., 11:2 (2008),  127–137
  7. Study of convergence of the projection-difference method for hyperbolic equations

    Sibirsk. Mat. Zh., 48:1 (2007),  93–102
  8. Error Estimates for Schemes of the Projection-Difference Method for Abstract Quasilinear Hyperbolic Equations

    Mat. Zametki, 80:1 (2006),  38–49
  9. On the convergence of the Galerkin method for coupled thermoelasticity problems

    Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006),  1462–1474
  10. On error estimates in the Galerkin method for hyperbolic equations

    Sibirsk. Mat. Zh., 46:2 (2005),  374–389
  11. Error estimation for the Galerkin method as applied to a nonlinear coupled shell thermoelasticity problem with a three-dimensional heat equation

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1677–1690
  12. Error Estimates in the Galerkin Method for an Abstract Second-Order Evolution Equation with Nonsmooth Right-Hand Side

    Differ. Uravn., 40:7 (2004),  944–952
  13. Error Estimates for Schemes of the Projection-Difference Method for Quasilinear Hyperbolic Equations

    Differ. Uravn., 40:6 (2004),  825–833
  14. On error estimates for schemes of the projection-difference method for hyperbolic equations

    Sib. Zh. Vychisl. Mat., 7:4 (2004),  309–325
  15. Estimates for the rate of convergence of the projection-difference method for hyperbolic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 1,  21–30
  16. Error Estimates of the Galerkin Method for Quasilinear Hyperbolic Equations

    Differ. Uravn., 37:7 (2001),  941–949
  17. Estimates for the Rate of Convergence of the Galerkin Method for Abstract Hyperbolic Equations

    Mat. Zametki, 69:2 (2001),  223–234
  18. Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations

    Sib. Zh. Vychisl. Mat., 3:4 (2000),  357–368
  19. Error estimates for the projection method for an abstract quasilinear hyperbolic equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5,  94–96
  20. Convergence rate of the Galerkin method for a class of quasilinear operator differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1519–1531
  21. On the existence and uniqueness of a solution and the rate of convergence of the Bubnov–Galerkin method for a quasilinear evolution problem in a Hilbert space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 10,  37–45
  22. Sharpened error estimates for the Bubnov–Galerkin method for a coupled problem of the thermoelasticity of plates

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 4,  75–77
  23. The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  157–168
  24. The Bubnov-Galerkin method for an abstract quasilinear problem on steady-state motion

    Differ. Uravn., 31:7 (1995),  1222–1231
  25. On the rate of convergence of the Bubnov–Galerkin method for a nonlinear problem in the theory of elastic shells

    Differ. Uravn., 31:5 (1995),  858–869
  26. On error estimates for the Bubnov–Galerkin method for coupled problems of thermoelasticity

    Differ. Uravn., 30:12 (1994),  2122–2132
  27. A dual variational principle for the wave equation

    Differ. Uravn., 28:6 (1992),  1033–1039
  28. The rate of convergence of the Rothe–Galerkin method for hyperbolic equations

    Differ. Uravn., 28:2 (1992),  305–316
  29. The rate of convergence of the Bubnov–Galerkin method for hyperbolic equations

    Differ. Uravn., 26:2 (1990),  323–333
  30. The rate of convergence of the Rothe–Galerkin method for a nonclassical system of differential equations

    Differ. Uravn., 25:7 (1989),  1208–1219
  31. Symmetrization of a hyperbolic equation

    Differ. Uravn., 25:4 (1989),  652–659
  32. Symmetrization of an operator of a boundary value problem for a hyperbolic equation

    Differ. Uravn., 25:3 (1989),  523–525
  33. Rate of convergence of the Bubnov–Galerkin method for a nonclassical system of differential equations

    Differ. Uravn., 23:8 (1987),  1407–1416


© Steklov Math. Inst. of RAS, 2026