RUS  ENG
Full version
PEOPLE

Degtev Aleksandr Nikolaevich

Publications in Math-Net.Ru

  1. New series of weakly implicative selector sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 7,  22–27
  2. $e$-principal numberings

    Sibirsk. Mat. Zh., 49:2 (2008),  299–307
  3. On generalisations of the notion of semirecursiveness

    Diskr. Mat., 17:2 (2005),  144–149
  4. On $p$-Reducibility of Computable Numerations

    Mat. Zametki, 69:1 (2001),  31–35
  5. Almost Combinatorial Selector Sets

    Mat. Zametki, 68:6 (2000),  851–853
  6. On reducibility of partial recursive functions

    Sibirsk. Mat. Zh., 41:6 (2000),  1345–1349
  7. Weakly implicative selector sets of dimension 3

    Diskr. Mat., 11:3 (1999),  126–132
  8. Almost semirecursive sets

    Mat. Zametki, 66:2 (1999),  188–193
  9. Weakly combinatorial selector sets

    Algebra Logika, 37:6 (1998),  627–636
  10. Implicative selector sets

    Algebra Logika, 35:2 (1996),  145–153
  11. On relations between complete sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 3,  8–14
  12. On the intersection of some classes of convergences

    Diskr. Mat., 5:4 (1993),  24–28
  13. Some properties of deducibility operators

    Mat. Zametki, 53:3 (1993),  23–28
  14. On multiple positive reducibility

    Sibirsk. Mat. Zh., 34:2 (1993),  74–76
  15. The semilattice of computable families of recursively enumerable sets

    Mat. Zametki, 50:4 (1991),  61–66
  16. Weak combinatorial-selective properties of subsets of the natural numbers

    Algebra Logika, 29:4 (1990),  421–429
  17. Recursive-combinatorial properties of subsets of natural numbers

    Algebra Logika, 29:3 (1990),  303–314
  18. A problem of P. Odifreddi

    Sibirsk. Mat. Zh., 30:1 (1989),  185–187
  19. Some lattice-invariant properties of families of recursively enumerable sets

    Algebra Logika, 27:5 (1988),  527–534
  20. Computable numberings to which noncomputable numberings are positively reducible

    Mat. Zametki, 42:5 (1987),  723–728
  21. Semilattices of disjunctive and linear degrees

    Mat. Zametki, 38:2 (1985),  310–316
  22. A category of enumerated sets

    Mat. Zametki, 36:2 (1984),  261–268
  23. Relations between reducibilities of tabular type

    Algebra Logika, 22:3 (1983),  243–259
  24. Relationships between degrees of tabular type

    Algebra Logika, 22:1 (1983),  35–52
  25. Comparison of linear reducibility with other reducibilities of tabular type

    Algebra Logika, 21:5 (1982),  511–529
  26. Relations between complete sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 5,  50–55
  27. On reducibilities of numerations

    Mat. Sb. (N.S.), 112(154):2(6) (1980),  207–219
  28. A category of partial recursive functions

    Sibirsk. Mat. Zh., 21:3 (1980),  89–97
  29. Some results on upper semilattices and $m$-degrees

    Algebra Logika, 18:6 (1979),  664–679
  30. Reducibilities of tabular type in the theory of algorithms

    Uspekhi Mat. Nauk, 34:3(207) (1979),  137–168
  31. Three theorems on $tt$-degrees

    Algebra Logika, 17:3 (1978),  270–281
  32. Decidability of the $\forall \exists $-theory of a certain factor-lattice of recursively enumerable sets

    Algebra Logika, 17:2 (1978),  134–143
  33. $m$-Degrees of supersets of simple sets

    Mat. Zametki, 23:6 (1978),  889–893
  34. A family of maximal subalgebras of R. Robinson's algebra

    Mat. Zametki, 22:4 (1977),  511–516
  35. Reducibility of partially-recursive functions. II

    Sibirsk. Mat. Zh., 18:4 (1977),  765–774
  36. Partially ordered sets of $1$-degrees that occur in recursively enumerable $m$-degrees

    Algebra Logika, 15:3 (1976),  249–266
  37. Minimal $1$-degrees, and truth-table reducibility

    Sibirsk. Mat. Zh., 17:5 (1976),  1014–1022
  38. Reducibility of partially recursive functions

    Sibirsk. Mat. Zh., 16:5 (1975),  970–988
  39. $tt$- and $m$-degrees

    Algebra Logika, 12:2 (1973),  143–161
  40. Hereditary sets and truth-table reducibility

    Algebra Logika, 11:3 (1972),  257–269
  41. The $m$-degrees of simple sets

    Algebra Logika, 11:2 (1972),  130–139
  42. Hypersimple sets with retraceable complements

    Algebra Logika, 10:3 (1971),  235–246
  43. Several remarks on retraceable, regressive and pointwise decomposable sets

    Algebra Logika, 9:6 (1970),  651–660


© Steklov Math. Inst. of RAS, 2026