RUS  ENG
Full version
PEOPLE

Kan Igor' Davidovich

Publications in Math-Net.Ru

  1. Remnants of continuants with large fixed endings

    Funktsional. Anal. i Prilozhen., 60:1 (2026),  20–44
  2. Modular values of continuants with fixed prefixes and endings

    Mat. Sb., 217:1 (2026),  54–88
  3. Around Zaremba's conjecture

    Mat. Zametki, 117:5 (2025),  680–686
  4. Reachability of inequalities from Lame's theorem

    Dal'nevost. Mat. Zh., 24:1 (2024),  45–54
  5. Modular Generalization of the Bourgain–Kontorovich Theorem

    Mat. Zametki, 114:5 (2023),  739–752
  6. System of Inequalities in Continued Fractions from Finite Alphabets

    Mat. Zametki, 113:2 (2023),  197–206
  7. Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension

    Funktsional. Anal. i Prilozhen., 56:1 (2022),  66–80
  8. Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets

    Mat. Zametki, 112:3 (2022),  412–425
  9. The derivative of the Minkowski function

    Izv. RAN. Ser. Mat., 85:4 (2021),  5–52
  10. Inversions of Hölder's Inequality

    Mat. Zametki, 110:5 (2021),  704–714
  11. Stationary points of the Minkowski function

    Mat. Sb., 212:10 (2021),  3–15
  12. A strengthening of the Bourgain-Kontorovich method: three new theorems

    Mat. Sb., 212:7 (2021),  39–83
  13. A strengthening the one of a theorem of Bourgain – Kontorovich

    Dal'nevost. Mat. Zh., 20:2 (2020),  164–190
  14. Differentiability of the Minkowski function $?(x)$. II

    Izv. RAN. Ser. Mat., 83:5 (2019),  53–87
  15. Differentiability of the Minkowski $?(x)$-function. III

    Mat. Sb., 210:8 (2019),  87–119
  16. Is Zaremba's conjecture true?

    Mat. Sb., 210:3 (2019),  75–130
  17. Linear Congruences in Continued Fractions on Finite Alphabets

    Mat. Zametki, 103:6 (2018),  853–862
  18. A strengthening of a theorem of Bourgain and Kontorovich. V

    Trudy Mat. Inst. Steklova, 296 (2017),  133–139
  19. A strengthening of a theorem of Bourgain and Kontorovich. IV

    Izv. RAN. Ser. Mat., 80:6 (2016),  103–126
  20. Inversion of the Cauchy–Bunyakovskii–Schwarz Inequality

    Mat. Zametki, 99:3 (2016),  361–365
  21. A strengthening of a theorem of Bourgain and Kontorovich. III

    Izv. RAN. Ser. Mat., 79:2 (2015),  77–100
  22. A strengthening of a theorem of Bourgain and Kontorovich

    Izv. RAN. Ser. Mat., 78:2 (2014),  87–144
  23. A strengthening of a theorem of Bourgain–Kontorovich II

    Moscow J. Combin. Number Theory, 4:1 (2014),  78–117
  24. Quantitative generalizations of Niederreiter's results on continued fractions

    Chebyshevskii Sb., 12:1 (2011),  100–119
  25. Methods for estimating of continuants

    Fundam. Prikl. Mat., 16:6 (2010),  95–108
  26. The Frobenius Problem for Classes of Polynomial Solvability

    Mat. Zametki, 70:6 (2001),  845–853
  27. Refining of the comparison rule for continuants

    Diskr. Mat., 12:3 (2000),  72–75
  28. Representation of numbers by linear forms

    Mat. Zametki, 68:2 (2000),  210–216
  29. On a problem of Frobenius

    Fundam. Prikl. Mat., 3:3 (1997),  821–835
  30. Frobenius problem for three arguments

    Mat. Zametki, 62:4 (1997),  626–629
  31. On an embedding theorem for Möbius functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 3,  82–84
  32. Möbius functions of the union of partial orders

    Diskr. Mat., 3:2 (1991),  121–127


© Steklov Math. Inst. of RAS, 2026