RUS  ENG
Full version
PEOPLE

Ovchinnikov Vladimir Ivanovich

Publications in Math-Net.Ru

  1. Interpolation functions and the Lions–Peetre interpolation construction

    Uspekhi Mat. Nauk, 69:4(418) (2014),  103–168
  2. Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces

    Mat. Sb., 205:1 (2014),  87–104
  3. Sharp Interpolation Theorems in Couples of $L_p$ Spaces for Generalized Lions–Peetre Spaces of Means

    Funktsional. Anal. i Prilozhen., 46:4 (2012),  91–94
  4. The quasinormed Neumann–Schatten ideals and embedding theorems for the generalized Lions–Peetre spaces of means

    Algebra i Analiz, 22:4 (2010),  214–231
  5. Sharpness of the Calderón–Lozanovskii Interpolation Construction

    Funktsional. Anal. i Prilozhen., 40:1 (2006),  79–83
  6. Interpolation properties of scales of Banach spaces

    Mat. Zametki, 80:6 (2006),  803–813
  7. Interpolation Orbits in Couples of Lebesgue Spaces

    Funktsional. Anal. i Prilozhen., 39:1 (2005),  56–68
  8. A Criterion for Contiguity of Quasiconcave Functions

    Mat. Zametki, 70:5 (2001),  780–786
  9. Coherent trace-class operators in Hilbert couples

    Mat. Zametki, 63:6 (1998),  866–872
  10. Interpolation of Cross-Normed Ideals of Operators Defined on Different Spaces

    Funktsional. Anal. i Prilozhen., 28:3 (1994),  80–82
  11. Computation of the $K$-functional for pairs of matrix spaces

    Mat. Zametki, 55:5 (1994),  98–109
  12. An optimal interpolation theorem for weighted quasi-Banach spaces $l_p$ and for operators in Neumann–Schatten classes in Hilbert couples

    Mat. Zametki, 53:2 (1993),  94–99
  13. Functorial approach to interpolation of operators of weak type

    Sibirsk. Mat. Zh., 32:3 (1991),  12–23
  14. Interpolation theorems for the spaces $L_{p,q}$

    Mat. Sb. (N.S.), 136(178):2(6) (1988),  227–240
  15. The Calderon theorem for the pair of spaces $L_1+L_\infty$ and $L_1\cap L_\infty$

    Trudy Mat. Inst. Steklov., 180 (1987),  168–169
  16. Exact interpolation theorem for $L_{p}$ spaces

    Dokl. Akad. Nauk SSSR, 272:2 (1983),  300–303
  17. Inequalities for entire functions of exponential type in symmetric spaces

    Trudy Mat. Inst. Steklov., 161 (1983),  3–17
  18. Inequalities for different metrics and dimensions in symmetric spaces, and imbeddings of generalized Besov spaces

    Dokl. Akad. Nauk SSSR, 262:4 (1982),  781–784
  19. Interpolation in quasi-Banach Orlicz spaces

    Funktsional. Anal. i Prilozhen., 16:3 (1982),  78–79
  20. Sharp estimates of the Fourier coefficients of summable functions and $K$-functionals

    Mat. Zametki, 32:3 (1982),  295–302
  21. On estimates of interpolation orbits

    Mat. Sb. (N.S.), 115(157):4(8) (1981),  642–652
  22. Interpolation operators of the class $\mathfrak G_p$ into Hilbert pairs

    Mat. Zametki, 27:2 (1980),  273–282
  23. On interpolation in real method spaces

    Dokl. Akad. Nauk SSSR, 246:4 (1979),  794–797
  24. Description of interpolation orbits

    Funktsional. Anal. i Prilozhen., 13:4 (1979),  85–86
  25. Interpolation orbits of the classes $\mathfrak{S}_p$ in pairs of Hilbert spaces

    Dokl. Akad. Nauk SSSR, 242:1 (1978),  52–55
  26. Interpolation theorems resulting from an inequality of Grothendieck

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  45–54
  27. Compact operators relative to a von Neumann algebra

    Funktsional. Anal. i Prilozhen., 6:1 (1972),  37–40
  28. On a problem in the theory of nonlinear Fredholm operators

    Mat. Zametki, 10:5 (1971),  541–549
  29. Symmetric spaces of measurable operators

    Dokl. Akad. Nauk SSSR, 191:4 (1970),  769–771
  30. $s$-numbers of measurable operators

    Funktsional. Anal. i Prilozhen., 4:3 (1970),  78–85

  31. Vladimir Alekseevich Kostin (to the 75th anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014),  135–140


© Steklov Math. Inst. of RAS, 2026