RUS  ENG
Full version
PEOPLE

Ilichev Vitaly Grigorevich

Publications in Math-Net.Ru

  1. Дельта-функции и парадоксы конкуренции в периодической среде

    Mat. Pros., Ser. 3, 29 (2022),  200–213
  2. “Matryoshkas” and stability in environmental models

    Math. Ed., 2021, no. 1(97),  31–37
  3. Optimal fishing and evolution of fish migration routes

    Computer Research and Modeling, 11:5 (2019),  879–893
  4. Theory and the main issue of the Preference card game

    Math. Ed., 2019, no. 1(89),  32–37
  5. On possible changes in phytocenoses of the sea of Azov under climate warming

    Computer Research and Modeling, 9:6 (2017),  981–991
  6. About universal constants of the stock in models of competition

    Mat. Model., 27:6 (2015),  81–98
  7. Evolutionary stable characteristics of sea of azov with variations of don river runoff

    UBS, 55 (2015),  259–279
  8. Two-party graphs and monotonicity properties of the Poincaré mapping

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1,  31–40
  9. Optimization and spatial adaptation in a problem of a long-term harvesting of fish populations

    Probl. Upr., 2014, no. 2,  66–74
  10. Hypotheses about laws of biological adaptation. Computer experiments

    Mat. Model., 24:10 (2012),  15–32
  11. “Nonlinear skeletons” in the spatio-temporal ecological models

    Mat. Model., 23:2 (2011),  125–147
  12. Inheritance Principle in Dynamical Systems

    Mat. Zametki, 90:6 (2011),  860–874
  13. Stabilization and vitality in ecological models. Formation process of passive states

    Mat. Model., 21:8 (2009),  3–20
  14. Convex structures in ecological models

    Mat. Model., 19:4 (2007),  90–102
  15. The concept of evolutionary stability in ecological models

    Differ. Uravn., 42:3 (2006),  327–337
  16. Computational experimentsin searching of nitrogen and phosphorus disbalance appearance in Azov sea

    Mat. Model., 18:2 (2006),  89–100
  17. Adaptation of parameters in ecology models

    Avtomat. i Telemekh., 2005, no. 2,  124–137
  18. Evolution-stable parameters in a periodically changing environment

    Avtomat. i Telemekh., 2004, no. 4,  118–132
  19. Parameters adaptation mechanisms in ecological models

    Mat. Model., 16:2 (2004),  54–68
  20. Local and global properties of nonautonomous dynamical systems and their application to competition models

    Sibirsk. Mat. Zh., 44:3 (2003),  622–635
  21. Geometric Methods of the Investigation of Competition Models in a Periodic Medium

    Avtomat. i Telemekh., 2002, no. 4,  105–117
  22. Hereditary properties of nonautonomous dynamical systems and their application in competition models

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 6,  26–36
  23. To the modelling of group's dynamics

    Mat. Model., 14:12 (2002),  72–84
  24. The analysis of competition models in constant and periodically changing environment

    Mat. Model., 14:3 (2002),  71–83
  25. Universal Margin Factors and Selection Criteria in Variable Environment

    Mat. Zametki, 70:5 (2001),  691–704
  26. Sign structures of matrices and their application to the analysis of dynamical systems

    Avtomat. i Telemekh., 1999, no. 10,  126–135
  27. Sign-invariant structures of matrices, and discrete models

    Diskr. Mat., 11:4 (1999),  89–100
  28. On the stabilizing action of two feedbacks with delay

    Avtomat. i Telemekh., 1998, no. 9,  17–28
  29. Delta functions and the investigation of Volterra ecological models in a changing environment

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 4,  23–33
  30. Delta Functions and Computation Theory in a Variable Medium

    Avtomat. i Telemekh., 1996, no. 11,  115–127
  31. On Selection Criteria in Ecology

    Avtomat. i Telemekh., 1996, no. 5,  120–133
  32. Passive states and stabilization of dynamic systems

    Avtomat. i Telemekh., 1995, no. 3,  127–138
  33. Passive variables – a stabilizing factor in dynamical systems (on the example of ecological systems)

    Avtomat. i Telemekh., 1992, no. 12,  88–95
  34. On the technology of ecological simulation modelling constraction. Adaptation processes

    Mat. Model., 4:3 (1992),  11–19
  35. Fragment of a mathematical theory of competition among biological species in a variable environment

    Differ. Uravn., 27:3 (1991),  437–447
  36. Unexpected properties of biological species competition in variable environment

    Avtomat. i Telemekh., 1990, no. 9,  34–44
  37. Adaptation of parameters in models of ecological systems

    Avtomat. i Telemekh., 1990, no. 6,  102–111
  38. The structure of a family of feedbacks and the stability of ecological systems

    Avtomat. i Telemekh., 1986, no. 12,  66–75

  39. Аплодисменты здесь тихие

    Kvant, 2016, no. 3,  34–35
  40. Евклид и неприводимые многочлены

    Kvant, 2016, no. 1,  50
  41. Optimal Fishing Strategy and Economy

    Math. Ed., 2008, no. 1(45),  39–45


© Steklov Math. Inst. of RAS, 2026